

Formation en Sciences de la Terre et de l'Atmosphère

Observatoire de Physique du Globe de Clermont-Ferrand

Année universitaire 2018-2019

Mémoire de Master 2 « Sciences de la Terre et des planètes, environnement » Parcours Magmas et Volcans

Anatomie de la croûte continentale

Présenté par

Lucas MAULNY

Encadrants : Jean-François Moyen

Émilie Bruand

Martin Guitreau Rapporteurs :

Tahar Hammouda

Ali Bouhifd

Jurys :

Régis Doucelance

Karim Kelfoun

Bertrand Moine

Olgeir Sigmarsson

Laboratoire Magmas et Volcans

REMERCIEMENTS

Je voudrais remercier Émilie Bruand et Jean-François Moyen pour m'avoir permis de travailler sur un sujet passionnant et intéressant que sont ces vieux cailloux Archéen et ce qu'ils contiennent. Merci à Émilie pour m'avoir accompagné lors des manipulations et de l'écriture. J'ai compris qu'il faut que je sois plus « égoïste » et de faire passer mes résultats en premier. Merci Jean-François pour ces conversations très intéressantes sur le craton du Kaapvaal et toutes les anecdotes assez marrantes (et les râpés). Un grand Merci à vous deux pour m'avoir accompagné et apporté toutes ces connaissances.

Merci à Claire Fonquernie pour avoir préparé mes échantillons. Merci à Jean-Marc Hénot pour son aide au MEB, et sa patience fasse aux pannes exotiques. Merci à Jean-Luc Devidal pour son aide à la microsonde électronique et Jean-Luc Pyro pour son aide avec le laser et m'avoir permis de finir mes analyses malgré la fin de la bouteille d'argon qui arrivait très vite.

Merci à Jean-Louis Paquette pour m'avoir montré à 100 % le fonctionnement du laser (ainsi que les logiciels) et m'avoir accompagné de A à Z pour la datation des zircons. Merci à Valérie Bosse pour m'avoir accompagné sur les monazites.

Merci à Pierre Bonnand et Mammeth Benbakkar pour m'avoir montré et fait faire les différentes manipulations en salle blanche et salle grise. Également merci à Krzysztof Suchorski pour avoir fait mes analyses pour les éléments en traces en roche totale suites aux imprévus...

Comment ne pas vous citer également, merci à mes camarades de promotion, pour les moments de travails, de réflexions et de rigolades (décompressions).

SOMMAIRE

REMERCIEMENTS	2
1 INTRODUCTION	5
2 CONTEXTE GÉOLOGIQUE	7
2.1 Le craton du Kalahari dans le Sud de l'Afrique	7
2.2 Le bloc de Pietersburg	8
2.2.1 Description et limites géographiques	8
2.2.2 Histoire géologique	9
2.3 Description de l'affleurement	10
3 ÉTUDE PÉTROLOGIQUE	12
3.1 Les gneiss	13
3.2 L'amphibolite	16
4 MÉTHODOLOGIE	19
4.1 Préparation des échantillons	. 19
4.2 Acquisition des concentrations en éléments majeurs de la roche totale	19
4.2.1 Principe de base	19
4.2.2 Préparation de la solution	20
4.3 Acquisition des concentrations en éléments en traces de la roche totale	21
4.3.1 Principe de base	21
4.3.2 Préparation de l'échantillon	22
4.4 Le Microscope Électronique à Balayage (MEB)	22
4.5 La microsonde électronique	23
4.6 Spectromètre de masse à plasma à couplage inductif et source laser (LA-ICP-MS)	24
5 RÉSULTATS	27
5.1 Comparaison des éléments en traces en roche totale entre le LMV et le SARM	27
5.2 Les concentrations en roche totale	28
5.3 Les datation des gneiss gris pas U-Pb sur zircon	30
5.5.1 Les apatites	34
5.5.2 Les monazites, allanites et apatites secondaires	38
6 DISCUSSION	40
6.1 Le protocole expérimental de chimie	40
6.2 La signification des âges U-Th-Pb des zircons et monazites	40
6.4 Monazites et couronnes de déstabilisations	46
7 CONCLUSION	48
8 RÉFÉRENCES	49

ANNEXES
Annexe 1 : Photo de l'affleurement dans sa globalitéI
Annexe 2 : Récapitulatif des analyses sur standard (microsonde électronique)II
Annexe 3 : Tableaux des conditions d'analyses à la microsonde électronique
Annexe 4 : Récapitulatif des analyses sur standard (LA-ICP-MS)IV
Annexe 5 : Tableau des concentrations en roche totale des éléments majeursVIII
Annexe 6 : Tableau des concentrations en roche totale des éléments en traces + valeurs de la littératureIX
Annexe 7 : Comparaisons des analyses en roche totale des éléments en traces entre le LMV et le SARMX
Annexe 8 : Récapitulatif des analyses U-(Th)-Pb sur zircons et monazites XIV
Annexe 9 : Analyses LA-ICP-MS des apatitesXVI
Annexe 10 : Analyses microsonde électronique des apatites primaires XIX
Annexe 11 : Analyses microsonde électronique des apatites secondairesXXV
Annexe 12 : Analyses microsonde électronique des allanitesXXV
Annexe 13 : Analyses LA-ICP-MS des allanitesXXV
Annexe 14 : Analyses microsonde électronique des monazitesXXVI

1 INTRODUCTION

Les plus vieilles roches à l'affleurement aujourd'hui se sont mises en place pendant la période géologique appelée « Archéen » entre 4.0 et 2.5 milliard d'années (Ga). Ces roches sont rares à la surface da la Terre et sont présentes dans les cratons Archéens (Australie, Afrique du Sud, Canada, Inde, Groenland...), un terme désignant les premières lithosphères continentales. Des preuves de roches plus anciennes existent, les zircons de Jack Hills en sont les plus vieux témoins (4.4 Ga, Australie ; Wilde *et al.*, 2001). La partie visible de ces cratons est essentiellement composée de Tonalite – Trondhjémite – Granodiorite (TTG). Il y a également des komatiites, des roches éruptives ultrabasiques, ainsi que des granites tardifs et des sédiments.

Les TTGs sont des roches plutoniques différenciées dont la signature chimique diffère des granitoïdes post-Archéens. Elles sont riches en Na₂On enrichies en terres rares légères (LREE) et pauvres en terres rares lourdes (HREE), provoquant un fort fractionnement entre les terres rares légères (LREE) et les HREE ((La/Yb)_{moyen} = 49 ; Moyen et Martin, 2012). Les TTGs sont interprétés comme étant le produit de la fusion d'un métabasalte dans le domaine de stabilité du grenat, qui retient les HREE et appauvrit le liquide en ces éléments (Moyen et Martin, 2012). Le contexte géodynamique dans lequel ont été générés les TTGs est débattu. Certains pensent qu'il s'agit de la fusion de la croûte océanique plongeante en contexte de subduction (Martin, 2013) alors que d'autres émettent l'hypothèse qu'il s'agit d'une fusion en base d'une croûte océanique épaissie (Smities *et al.,* 2009).

Les TTGs de tous les cratons ont des chimies très semblables. La plupart sont caractérisés par un assemblage minéralogique fait de quartz, feldspaths et biotite. Malgré une longue et complexe histoire avec plusieurs épisodes métamorphiques, leur pétrologie ne varie que très peu ce qui rend l'étude des phases majeures dans les TTGs peu informative. Les seules phases capables d'enregistrer et de préserver des parties de l'histoire magmatique de ces TTGs sont les phases accessoires. Elles représentent une faible proportion au sein de la roche mais incorporent des éléments qui permettent de (i) dater la formation des roches (U-(Th)-Pb sur zircon et monazite) mais aussi (ii) de tracer leurs sources (éléments en trace, isotopes de l'Hf, O et Nd). Parmi les plus connus, le zircon est un silicate dont la formule structurale est ZrSiO4 dans lequel l'U peut facilement remplacer le Zr par substitution car ils ont un rayon ionique équivalent. La monazite est un phosphate qui a pour formule structurale (Ce, La, Nd, Th)PO4. Ces deux minéraux sont de

très bons géochronomètres et sont relativement résistants à des processus secondaires comme l'érosion et le métamorphisme.

Enfin, l'apatite est un autre phosphate dont la formule structurale est Ca₅(PO₄)₃(OH,CI,F). Elle est présente dans la plupart des roches magmatiques et métamorphiques. Elle peut incorporer beaucoup d'éléments en traces dont les terres rares. La composition en éléments en traces de l'apatite est sensible aux caractéristiques chimiques du liquide (SiO₂, Sr ; ex : Belousova *et al.*, 2001). De plus, les terres rares ont une faible diffusivité au sein du minéral pendant des évènements métamorphiques (Cherniak, 2000). Sa chimie permet donc d'étudier l'histoire magmatique d'une roche même si elle a subi de multiples évènements métamorphiques. Les caractéristiques chimiques de l'apatite et de la monazite dans des compositions TTGs sont quasi inexistantes dans la littérature. Récemment, des études (Bruand, Antoine communications personnelles) ont montré que les apatites de TTG avaient des compositions très différentes des compositions d'apatites de granitoïdes post-Archéens.

Dans le cadre de cette étude, des gneiss provenant du craton du Kaapvaal ont été étudiés. La présence de zircon, monazite et apatite dans ces gneiss donne la possibilité de reconstituer l'histoire pétrochronologique de terrains Archéens et de mieux comprendre la signature primaire particulière des phases accessoires des gneiss gris étudiés. Notre étude révèle le caractère primaire de la monazite et montre que la composition en éléments en traces des apatites de TTG est un bon outil pour tracer l'origine et la source de ces magmas.

2 CONTEXTE GÉOLOGIQUE

2.1 Le craton du Kalahari dans le Sud de l'Afrique

Le craton du Kalahari se situe géographiquement à cheval entre l'Afrique du Sud, le Botswana, le Lesotho, le Swaziland et le Zimbabwe. Il est constitué de trois sousensembles : Le craton de Kaapvaal (CK) au Sud, le craton du Zimbabwe (CZ) au Nord et la ceinture du Limpopo qui marque la séparation entre les deux (Figure 1). La partie remaniée du Kaapvaal, le Pietersburgburg bloc (PB), a enregistré une longue histoire de déformation et de magmatisme. Dans la partie la plus au Nord (traditionnellement reliée à la ceinture mobile du Limpopo), la zone marginale Sud du Limpopo (ZMS), ce remaniement culmine par un épisode en faciès granulite à 2.7 Ga. Dans la partie plus sud, lieu de notre étude, cet épisode métamorphique n'est pas observé (Figure 2).

Figure 1 : Carte structurale schématique représentant les différents domaines du craton CK (d'après Eglington et Armstrong, 2004). Le carré violet représente la zone d'étude.

2.2 Le bloc de Pietersburg

2.2.1 Description et limites géographiques

Le bloc de Pietersburg (BP) est au contact de la ZMS au Nord et du bloc de Witwatersrand au Sud (Figure 1 carré violet). Un très fort contraste de faciès métamorphique est observable entre la ZMS (faciès granulite) et le BP qui est caractérisé par un faciès métamorphique allant de schistes verts à amphibolitique. La zone de cisaillement de N'Tabalala délimite ces deux zones (Figure 2 ; Vézinet *et al.,* 2017).

	Cover / Major structure
\mathbb{Z}	Bushveld (2.06 Ga)
1.1.1	Alkaline complexes (2.06-2.05 Ga)
972X	Bt-Ep(-Hb) granitoids (c. 2.68 Ga)
11 =	Hb-Bt-(Cpx) "sanukitoids" (c. 2.68 Ga)
	Granulite metasediments (2.75-2.71 Ga)
+ +	Bt-(Ms) granites (2.85-2.75 Ga)
200	Mafic layered intrusion (2.96 Ga)
	Grey gneisses (mainly 3.12-2.84 Ga)
	Grey gneisses with 3.46-3.18 Ga remnants
	Supracrustal sequences (3.46-2.80 Ga)

Figure 2 : (En haut) Carte géologique de la partie Est du BP (carré violet de la figure 1) d'après Laurent et collaborateurs (2019) avec la localisation des deux affleurements de l'étude. MGB = ceinture de roches vertes de Murchison ; GGB = ceinture de roches vertes de Giyani ; PGB = ceinture de roches vertes de Pietersburg ; RGB = ceinture de roches vertes de Rhenosterkoppies ; SZ = zone de cisaillement. La zone hachée par des traits gris horizontaux correspond à la possible extension du faciès granulitique de la ZMS. Ci-contre la légende de la carte. Le BP est composé de plusieurs générations de gneiss déformés et migmatisés qui ont des compositions de type Trondhjémite-Tonalite-Granodiorite (TTG), roches typiques de l'Archéen. De plus, des intrusions mafiques contemporaines aux gneiss sont localement présentes (Robb *et al.*, 2006). Sur ce bloc affleurent des séquences supracrustales métamorphisée qui sont les ceintures de roches vertes de Murchison, Pietersburg, Giyani et Rhenosterskoppies (Laurent *et al.*, 2013). Enfin, des intrusions tardives (Mashashane, Matlala, Turploog, Matok...; < 2.7 Ga) ayant des chimie variables recoupent les lithologies précédemment citées (Figure 2).

2.2.2 Histoire géologique

L'histoire magmatique et géodynamique du PB se décompose en quatre périodes (Laurent, 2012 ; Laurent *et al.,* 2013 ; Laurent et Zeh, 2015) :

• Stade 1 (3.5 à 3.00 Ga) : Formation de la croûte juvénile du BP entrainant la genèse de granitoïdes à signature de TTG. Ces TTGs affleurent en enclave dans un matériel plus récent. Les autres témoins de cette période sont la présence de cœurs hérités de zircon datés à 3.4 Ga (Vezinet el al., (2017)), ainsi que des zircons détritiques dans des métasédiments (Zeh et Gerdes, 2012).

• Stade 2 (3.0 à 2.90 Ga) : Formation continue de TTGs volumineux à travers tout le BP, enregistrée par des zircons extraits des TTGs et des métasédiments. Ce volume important de TTG est lié à l'accrétion du BP avec le proto-craton du Kaapvaal (Zeh et a, 2013). Les analyses en éléments en traces de ces TTGs indiquent une fusion à 30 km ou plus (Laurent *et al.*, 2014). À cela s'ajoute un fort épisode de volcanisme felsique dans les ceintures de roches verte et un épisode de déformation localisé dans le Sud-Est du terrain.

Ici, l'hypothèse d'une subduction, sous le proto-craton de Kaapvaal est la plus communément acceptée. Cependant, la grande étendue de ces TTGs en ferait une subduction différente des actuelles (typique de la géodynamique Archéenne). La croûte chaude et ductile récemment formée aurait du mal à entrer en subduction et donc irait s'accréter sur la marge Nord du proto-craton du Kaapvaal.

• Stade 3 (2.89 à 2.75 Ga) : Mise en place de granites à biotite, d'après la définition de Moyen (2003), d'origine crustale majoritairement dans la partie Est du bloc. Il y a trois phases majeures distinctes à 2.88 Ga, 2.84 Ga et 2.78 Ga. Ces granites sont issus du remaniement intra crustal des TTGs issus du stade 2. Ils ont une direction ENE-WSW, ce

qui est parallèle à la suture entre le BP et le bloc adjacent situé au Sud. Cela indique que la croûte continentale a subi un épisode de déformation et de fusion partielle sur l'ensemble du bloc, sûrement causé par un épaississement de la croûte à la suite de la convergence (stade 2).

• Stade 4 (2.71 à 2.67 Ga) : À 2.71 Ga, le BP commence à entrer en collision avec un complexe plus au nord, pouvant être la ceinture du Limpopo (Zeh *et al.,* 2009). Cette collision donne lieu au développement du faciès granulitique dans la ZMS (Nicoli *et al.,* 2015).

2.3 Description de l'affleurement

Les échantillons étudiés dans ce travail sont situés dans le sud du BP, entre les batholites de Turploof et de Duiwelskloof (Figure 2b). Ils proviennent de deux localités : (i) les échantillons Swasa-89, Swasa-91 et Swasa-95 (analogue de l'échantillon GLG-2 de Laurent et Zeh, 2015) proviennent d'un affleurement frais (Affleurement 1) dans une tranchée de bord de route (Figure 3 ; photo le représentant entièrement en Annexe 1) aux coordonnées 23°55'31"S et 29°53'41"E en degrés sexagésimaux. (ii) Les deux autres échantillons, Swasa-96 et Swasa-98 proviennent d'un autre affleurement (Affleurement 2) situé quelques kilomètres plus à l'Ouest (Figure 2B) aux coordonnées 23°55'59"S et 29°51'54"E. Dans la suite de ce paragraphe, seulement l'affleurement 1 est décrit en détails afin de montrer la complexité d'un affleurement de gneiss gris sur notre zone d'étude.

L'affleurement fait une quarantaine de mètres de long pour 5 à 7 mètres de haut. Il est composé de : (1) des gneiss composites gris clairs (Figure 3 couleur grise), (2) des gneiss gris sombres localement présents (Figure 3D couleur noire) et (3) des gneiss blancs recoupant à la vertical l'ensemble de l'affleurement (Figure 3 couleur blanche). Il y a aussi (4) deux intrusions mafiques qui sont des amphibolites (Figure 3A couleur verte) sur la gauche de l'affleurement. Ces quatre lithologies sont fortement déformées et décrivent une foliation verticale. Le tout est recoupé par (5) des filons leucocrates de nature variées (pegmatite, granite ; Figure 3B et 3C).

Figure 3 : Quatre photos de l'affleurement associées à sa représentation schématique de l'organisation des différents éléments que composent l'affleurement. La foliation verticale des gneiss et des filons leucocrates les recoupant sont visibles sur l'intégralité des clichés. Le cliché (A) mais en évidence l'intrusion mafique composée d'amphibolite qui semble être contemporaine aux gneiss. Les clichés (B) et (C) mettent en évidences des intrusions importantes de produits leucocrates, que ce soient des poches (B) ou un filon (C),

Δ

dont les mises en place sont postérieures aux gneiss. La photo (D) représente au mieux la distinction entre les deux types gneiss composites. La localisation des clichés sur l'affleurement est indiquée en annexe 1.

Amphibolite

Gneiss gris dair

Gneiss gris fonce Gneiss blanc Produits leucocrates tardifs

3 ÉTUDE PÉTROLOGIQUE

Les différentes lithologies présentes à l'affleurement ont été étudiées dans ce travail. Un récapitulatif des échantillons étudiés, leur nature et les différentes analyses effectuées sont disponibles dans le tableau 1. Les analyses sur lame mince ont été faites sur les roches échantillonnées en 2018 (Série Swasa). Cependant, les analyses en roche totale ainsi que les minéraux montés sur plots proviennent de roches échantillonnées antérieurement dans les mêmes lithologies (Série LP-17 ; Annexe 1). Uniquement les échantillons Swasa-96 et Swasa-98 proviennent de l'affleurement 2, tous les autres sont issus de l'affleurement 1.

Echantillon	Nature	Roche totale éléments majeurs	Roche totale éléments traces	U-Pb monazite (Laser)	U-Pb zircon (Laser)	Éléments traces apatite (Laser + microsonde)	Éléments traces allanite et apatite secondaire (microsonde)
Swasa-89	Gneiss gris clair			x		x	x
LP-17-10	Oneiss gris ciali	x	x		x	x	
Swasa-91	Gneiss gris sombre			x		x	x
LP-17-14	Chicles Bus source	x	x		x	x	
Swasa-95	Amphiholite					x	
GLG-2	Amphibolite	x	x			x	
Swasa-96	Gneiss gris					x	
Swasa-98	Gneiss gris					x	
LP-17-11	Gneiss blanc	x	x		x	x	
LP-17-19	Gneis blanc				x		
LP-17-20	Gneiss gris				x	x	

Tableau 1 : Récapitulatif des différents échantillons des séries « Swasa » et « LP-17 ». Les traits gras indiquent un changement de roche échantillonnée, les traits simples indiquent qu'il s'agit d'une même roche échantillonnée deux fois. Le symbole x indique que les échantillons qui ont servi pour chaque analyse.

Description des lames

L'étude se base en partie sur l'analyse pétrologique des différentes phases accessoires de cinq lames minces : quatre gneiss gris et une amphibolite (Tableau 1). Dans le tableau ci-dessous, un inventaire est fait des différentes phases présentes dans chacune des lames étudiées (Tableau 2).

	Lithologie	Quartz	Feldspath plagioclase	Biotite	Amphibole	Chlorite	Muscovite	Apatite	Zircon	Monazite	Titanite	Épidote	Allanite	Thorite
Swasa-89 / LP-17-10	Gneiss gris clair	x	x	x		x	x	x	x	x	x	x	x	x
Swasa-91 / Lp-17-14	Gneiss gris sombre	x	x	x		×	x	x	x	x	x	x	x	x
Swasa-95 / GLG-2	Amphibolite	x	x		x	x	x	x	x		x			
Swasa-96	Gneiss gris	x	x	x		x	x	x	x	x	x	x	x	x
Swasa-98	Gneiss gris	x	x	x		x	x	x	x	x	x		x	x

Tableau 2 : Tableau récapitulatif des différentes phases pour chaque échantillon. L'orange indique les minéraux principaux selon la lithologie, le vert indique les minéraux d'altération et le bleu les phases accessoires. Le symbole x indique que la phase présente.

3.1 Les gneiss

Les quatre gneiss (Swasa-89 ; -91 ; -96 ; -98) ont pour minéraux principaux la biotite, le quartz, le feldspath alcalin, le feldspath plagioclase et la muscovite. Dans ces échantillons, les biotites définissent la foliation. La chlorite est secondaire et remplace localement les micas. Les feldspaths sont rarement séricitisés. Les phases accessoires primaires présentent dans ces quatre échantillons sont le zircon, l'apatite, la titanite et la monazite (tableau 2). Elles sont majoritairement présentes dans les zones riches en biotite. La monazite est présente dans ces quatre gneiss gris. Les zonations et relations texturales de ces phases accessoires sont écrites ci-dessous.

<u>Zircon</u>

Ces quatre gneiss contiennent des zircons pouvant être en inclusion dans le quartz, les feldspaths, la biotite et l'apatite. Ces zircons font en moyenne 60 à 150 µm de long mais des exceptions peuvent atteindre les 600 µm (LP-17-14). Ils sont abondants dans les lames et présentent des zonations oscillatoires magmatiques en cathodoluminescence (CL; Figure 4A). Cependant beaucoup sont métamictes faussant toute mesure chronologique (Figure 4B). Quelques xénocristes ont été identifiés. Ces cœurs plus anciens sont le témoin d'une activité antérieure (Figure 4C et 4D).

<u>Titanite</u>

La titanite est présente dans les quatre gneiss et est texturalement secondaire. Elle se développe soit : (i) au contact entre la biotite et la muscovite (Figure 7A), la biotite étant la source du Ti nécessaire à la formation de la titanite (CaTi(SiO₅)) alors que la muscovite apporte le Ca. (ii) Elle est également présente dans les plans de clivage de la biotite. Selon Yui (2000) la formation de la titanite dans la biotite peut s'expliquer par la diffusion du Ca et du Ti via les fractures ou le clivage pendant une phase de déformation. Dans les deux cas de figures, elle est présente sous forme d'amas constitué de plusieurs micrograins (<2 microns) ce qui ne permet pas de les analyser.

<u>Apatite</u>

Echantillons Swasa-89 (gneiss gris clair) et Sawasa-91 (gneiss gris foncé ; Affleurement 1)

Dans les deux échantillons, les apatites sont en inclusion dans les feldspaths et le quartz (Figure 5A), ou fréquemment en contact avec de la biotite. Leurs tailles vont de 70 à ~300 µm, les plus grandes (>250 µm) sont des faces longitudinales sub-automorphes

(longues baguettes), les plus petites sont automorphes et peuvent être hexagonales (section basale). L'imagerie en CL ne révèle aucune zonation, tous les grains sont homogènes.

Echantillons Swasa-96 et Swasa-98 (gneiss gris ; Affleurement 2)

Dans ces deux échantillons, les apatites sont en inclusion dans les feldspaths, le quartz et la biotite (Figure 5C). Elles sont souvent aux contacts des biotites. Leurs tailles varient entre 50 et ~800 µm (Figure 5B). Les cristaux sont sub-automorphes, La plupart des apatites montrent des zonations oscillatoires en CL (Figure 5D). Dans de rare cas, une zonations en patch peut être observée (Figure 5E).

Figure 4 : Photos des zircons présents sur le plot époxy prisent par MEB avec le filtre CL. (A) Cliché d'un zircon provenant de l'échantillon LP-17-14 qui a des oscillations magmatiques. (B) Cliché de deux zircons, provenant de l'échantillon LP-17-19, métamictes (non analysables) qui sont très fréquents dans ces roches Archéennes. (C) Photos de deux zircons, provenant de LP-17-20. Ils ont chacun un cœur avec des oscillations magmatique analysable. (D) Photo d'un zircon ayant un cœur hérité provenant de LP-17-10.

Figure 5 : Photos d'apatites prises sur les lames minces par microscope électronique à balayage. (A) Cliché pris sur Swasa-89 présentant deux apatites, une face longitudinale sub-automorphe sur la droite et une basale hexagonale automorphe sur la gauche. (B) Cliché d'une apatite face longitudinale avec des zircons en inclusion sur Swasa-96. (C) Photo d'une apatite en inclusion dans de la biotite sur Swasa-96. (D) Photo de deux apatites sur Swasa-98 prises par MEB avec le filtre CL ayant chacune trois oscillations. (E) Cliché pris sur Swasa-96 d'une apatite par MEB en CL présentant une circulation de fluide. (F) Photo d'une apatite dans l'amphibolite (Swasa-95), elle est en inclusion dans de l'amphibole. Il s'agit d'une face basale hexagonale qui est cassée sur le bas.

<u>Monazite</u>

Les monazites sont présentes dans les quatre gneiss gris, elles peuvent être en inclusion dans les feldspaths (Figure 6A), le quartz, la biotite et l'apatite. Leurs tailles varient entre 15 et 30 µm de diamètre (Figure 6C et 6D). Quand les monazites sont au contact du plagioclase, elles développent systématiquement une couronne composée d'apatite, grains de thorite, allanite et épidote : Monazite + Anorthite \rightarrow Apatite + Thorite + Allanite + Épidote (Figure 6B). La monazite peut être quasiment intacte ou totalement consommée par la réaction métamorphique (Figure 6B). Quand la monazite est en inclusion dans l'apatite ou la biotite, la couronne métamorphique n'est pas présente. En inclusion dans le quartz, l'apatite secondaire est peu développée, l'allanite y est très fibreuse et il n'y a pas d'épidote (Figure 6E). La plupart du temps les monazites étudiées ne présentes aucunes zonation sauf dans de rares cas dans l'échantillon Swasa-91 dans lequel des oscillations magmatiques ont été identifiées (Figure 6F).

3.2 L'amphibolite

L'amphibolite (Swasa-95) elle est constituée d'amphibole, de quartz et de feldspath plagioclase présentant une forte séricitisation. Elle est clairement litée avec des zones très riches en amphibole (environ 80 % d'amphibole pour 20 % quartz + feldspaths) et d'autres où les feldspaths et le quartz sont prédominant (environ 60 % feldspaths + quartz pour 40 % d'amphibole). Pendant l'étude des lames minces, deux phases accessoires ont été observées, il s'agit de la titanite et de rares grains d'apatite. Des zircons ont été observés uniquement dans les séparas.

Apatite

Seulement trois apatites analysables ont été identifiées dans le lame, toutes trois sont dans la zone riche en quartz et feldspaths et sont en inclusion dans l'amphibole. Elles font entre 60 et 100 µm et sont automorphes (Figure 4F). En CL, aucune oscillation n'a été observée.

Dans les poudres de l'échantillon GLG-2, plusieurs apatites ont été trouvées. Elles font entre 60 et 150 µm de long, sont homogènes et sub-automorphes.

Figure 6 : Photos prises par MEB sur les lames minces Swasa-89 et Swasa-95. (A) Photos de deux monazites dans du plagioclase sur Swasa-91. Les deux présentent une couronnes de réaction, celle du haut étant plus avancée que celle en bas de l'image. (B) Photo d'une monazite sur Swasa-89 dans du plagioclase au contact d'une apatite. Le remplacement de la monazite par de l'apatite est avancée. La couronne composée d'allanite (épidote riche en terres rares) et de l'épidote est bien visible. (C) Photo d'une monazite sur Swasa-89 en inclusion dans une apatite. La couronne de réaction est présente uniquement proche du plagioclase. (D) Photo d'une apatite ayant deux monazites et deux zircons en inclusions. La couronne réactionnelle est présente uniquement à l'interface monazite-plagioclase. À noter un amas d'allanite sur la partie basse du cliché. (E) Photo d'une monazite sur Swasa-91 dans du plagioclase. Seulement l'allanite et l'apatite composent la couronne de réaction. Le carbonate est la source en calcium. (F) Photo d'une monazite avec un fort contraste sur Swasa-91. Des oscillations magmatiques sont bien visibles

<u>Titanite</u>

Les titanites primaires sont automorphes et essentiellement présentes dans les zones avec peu d'amphibole (Figure 7C). Celles-ci peuvent atteindre une taille de 20 à 30 µm et peuvent présenter des zonations oscillatoires. Dans les zones riches en amphibole, il y a peu de titanite. Les rares qui s'y trouvent sont secondaires, et se sont développées dans des fractures ou aux contacts des grains d'amphiboles. Elles sont interstitielles et peuvent atteindre 100 µm de long pour moins de 10 µm de large (Figure 7D). Dans ces zones, il semble y avoir eu des circulations de fluides (Figure 7B). La petite taille des titanites secondaires ne permet pas de les analyser.

Figure 7 : Photos représentatives des titanites, elles sont prises sur les lames minces. (A) Cliché pris avec microscope optique sur la lame Swasa-91 (gneiss gris). La titanite est secondaire à l'interface biotitemuscovite. (B) Photo prise par MEB sur l'amphibolite montrant une titanite primaire sur le bas et des titanites secondaires dans l'amphibole sur le haut du cliché. De plus il y a des zones plus sombres dans l'amphibole pouvant être des chenaux. (C) Photo MEB contrastée sur l'amphibolite d'une titanite primaire automorphe basale. (D) Photo MEB contrastée sur l'amphibolite d'une titanite secondaire entre deux grains d'amphiboles.

4 MÉTHODOLOGIE

4.1 Préparation des échantillons

Une moitié de chaque échantillon fut finement broyée en poudre qui par la suite ont été utilisées pour les analyses en roche totale. L'autre moitié des échantillons fut sciée, concassée dans un broyeur et tamisée afin de récupérer uniquement les grains inférieurs à 400 µm. Les grains sont triés préalablement grâce à une table à secousses puis les fractions magnétiques sont retirées grâce au séparateur magnétique. Enfin, la partie non magnétique est traitée par liqueur dense afin de récupérer la fraction la plus dense (>2.8), celle qui contient les zircons et apatites étudiées pour cette étude.

Ces grains sont triés et sélectionnés sous loupe binoculaire puis montés sur plots de résine. Les plots sont ensuite polis afin d'exposer les grains à la surface du plot pour réaliser les différentes analyses (microscope électronique à balayage, microsonde électronique et LA-ICP-MS).

4.2 Acquisition des concentrations en éléments majeurs de la roche totale

4.2.1 Principe de base

La collection des concentrations en éléments majeurs est réalisée grâce à l'ICP-AES (Inductively Coupled Plasma – Atomic Emission Spectroscopy) Jobin-Yvon Ultima C, présent au LMV. L'échantillon est introduit dans l'instrument sous forme de solution aqueuse via une sonde. Il est acheminé jusqu'au nébuliseur où il est mis en suspension afin d'obtenir un aérosol. Cet aérosol est conduit dans la chambre de nébulisation afin de séparer les grosses gouttelettes des petites et de garder les plus fines. Grâce à un gaz vecteur (Ar), les fines gouttelettes sont amenées à la torche à plasma.

Le plasma est généré par la collision d'électron libre et d'atome d'Ar. Pour cela, l'Ar est injecté dans un tube de manière tourbillonnante avec deux bobines qui l'entourent à son extrémité. Les lignes du champ de force induit par ces bobines sont dans l'axe du tube. Une brève décharge électrique est réalisée afin d'insérer les électrons libres dans le gaz. Grâce au champ magnétique, les électrons accélèrent et entrent en collision avec les atomes d'Ar et les ionisent. Un électron est libéré durant l'ionisation et ce processus se poursuit jusqu'à atteindre un équilibre entre l'argon qui est ionisé et la recombinaison des ions Ar avec des électrons : Ar + $e^- \rightleftharpoons Ar + 2e^-$. À la suite des collisions, un plasma se forme au sommet de la torche (Figure 8).

Figure 8 : Coupe transversale d'une torche à plasma d'un ICP (d'après Boss et Freeden, 1997). (A) Injection de l'Ar. (B) Bobines générant un champ de force. (C) Production d'électrons libres. (D) Les ions sont accélérés par le champ de force provoquant l'ionisation des atomes d'Ar et la génération du plasma. (E) Torche à plasma allumée. Ar = atome d'argon ; Ar⁺ = ion d'argon ; e⁻ = électron libre.

Dans le plasma, les atomes des gouttelettes sont excités puis ils retournent à l'état fondamental en émettant un photon dont la longueur d'onde est caractéristique de l'élément, il s'agit de la loi de Planck (1).

$$\Delta E = h * nu = \frac{h * c}{\lambda} \tag{1}$$

Où ΔE est la différence d'énergie entre l'état excité et l'état fondamental de l'élément (J) ; *h* la constante de Planck (J.s) ; *nu* la fréquence (Hz) ; *c* la célérité de la lumière dans le vide (m/s) et λ la longueur d'onde associée à l'élément (m).

Grâce à un système dispersif des raies d'émissions, il est possible de les séparer et de mesurer celles qui nous intéresse. La détection se fait grâce à un photomultiplicateur. Pour une longueur d'onde donnée, l'intensité du spectre est proportionnelle à la concentration d'élément dans la solution, une analyse quantitative peut donc être effectuée (Boss et Freeden, 1997).

4.2.2 Préparation de la solution

Afin d'analyser les échantillons par ICP-AES, il faut mettre les échantillons en solution. Pour cela, on place 100 mg de l'échantillon dans un creuset en graphite avec au moins 300 mg de fondant (du borate de lithium LiBO₂) qui va abaisser la température de

fusion de l'échantillon. Le creuset en graphite est placé à 1000 °C afin d'obtenir un sel (ou perle) où les liaisons métalliques sont rompues par fusion alcaline. Cette perle est directement placée dans une solution acidifiée (HNO₃ à 1%) où elle va se dissoudre dans la solution et donc rompre les liaisons ioniques. Enfin, la solution est placée dans une fiole jaugée de 200 mL, l'échantillon est donc dilué 2000 fois.

En parallèle, la perte au feu est calculée. Ceci correspond à la perte massique en eau de l'échantillon pendant la manipulation. Pour cela on pèse dans un pot en céramique environ 1 g d'échantillon. Ce pot est placé à 110 °C pendant 2h puis il est repesé afin de connaitre la perte en humidité de l'échantillon en effectuant la différence des deux masses. Puis le pot est replacé dans un four à 1000 °C pendant 2h, il est repesé afin de connaître la perte en eau contenu dans la maille cristalline. La différence des masses indiquera la perte en eau de l'échantillon se trouvant dans le réseau cristallin. La perte au feu finale est la somme des deux pertes de masses suites aux deux cuissons.

4.3 Acquisition des concentrations en éléments en traces de la roche totale

4.3.1 Principe de base

Les analyses des concentrations en éléments en traces ont été réalisées en solution par ICP-MS au laboratoire Magmas et Volcans. Afin de réaliser de bonne mesure, il est essentiel de casser toutes les liaisons atomiques de toutes les phases dont certaines sont très résistantes et contiennent la plupart de certains éléments en traces. Par exemple, le zircon (ZrSiO₄) est une phase très résistante contenant la plupart de l'Hf et du Zr de nos échantillons. Dans le cadre de cette étude, nous avons testé un nouveau protocole expérimental récemment établis au LMV, faisant intervenir un fondant (à base de NH₄HF₂) qui va casser les liaisons SiO₄. Une fois les échantillons mis en solution, on a pu les analyser via l'ICP-MS Agilent 7500. Il s'agit d'un spectromètre de masse à quadrupôle qui a une introduction aqueuse comme pour l'ICP-AES. L'aérosol est produit par collision entre l'échantillon et du gaz Ar et est acheminé à la torche où il est ionisé, formant un plasma électriquement neutre. L'interface torche/quadrupôle est faite de deux cônes en Ni et d'un système de focalisation qui ont pour but de transférer une partie de l'échantillon représentatif du plasma d'ions. Le quadrupôle est constitué de quatre barres métalliques parallèles sur lesquelles des tensions alternatives et continues sont appliquées afin de créer un champ électrique. Cela permet de séparer les ions selon leurs rapports masse/charge.

4.3.2 Préparation de l'échantillon

Les éléments en traces ont une concentration beaucoup plus faible que les majeurs et sont donc très sensibles à la contamination. C'est pourquoi les manipulations sont faites en salle blanche. Tout d'abord, on place 50 mg de poudre de chaque échantillon au fond d'un flacon auquel on ajoute 200 mg du fondant LMV. Les flacons fermés sont placés à 220°C pendant 24h dans une étuve afin que le fondant fasse effet. À la fin des 24h on ajoute 0.5 mL d'acide nitrique (HNO₃ 14n) que l'on place à 110 °C jusqu'à ce que l'évaporation soit totale. Cette étape est répétée deux fois de plus et sert à supprimer les groupes fluorures qui se sont créés avec le fondant.

Des piluliers vides sont pesés avant d'y mettre la solution mère. Les flacons sont remplis aux trois quarts avec du HNO₃ 7n et le contenu est transvasé dans des piluliers. L'étape est répétée deux fois pour laisser le moins de résidu possible, puis les piluliers sont pesés à froid. La solution mère est prête. Pour préparer les solutions filles, une masse équivalente à la roche de la solution mère pour chaque échantillon est prélevée et placée dans des flacons distincts. Les flacons sont mis à évaporation jusqu'à ce qu'elle soit totale. Une solution composée de 0,4 mole d'acide nitrique et 0,05 mole d'acide fluoridrique ayant pour but d'acidifier la solution fille, est utilisée pour rincer et le tout est transvasé dans un pilulier (répétée trois fois pour laisser le moins de résidu possible). On complète les piluliers avec cette même solution jusqu'à avoir un facteur de dilution de 5000, les piluliers des solutions filles sont pesés à froid et sont prêts à être analysés.

Pour cette étude, quatre échantillons (LP-17-10 ; LP-17-14 ; LP-17-20 ; GLG-2) ont été analysés ainsi que deux standards : un standard primaire GSP_2 (granodiorite ; USGS) et un standard secondaire AGV_2 (Andésite ; Jochum *et al.,* 2016) en contrôle qualité. Pendant la séquence d'analyse, nous avons également analysé un blanc pour s'assurer de la qualité des données. Dans le cadre de ce travail nous testions le nouveau protocole établi au LMV. De ce fait, les mêmes échantillons ont également été analysés au SARM (CRPG Nancy) afin de comparer la qualité des données obtenues au LMV.

4.4 Le Microscope Électronique à Balayage (MEB)

Des images par électrons rétrodiffusés (BSE : Black-Scattered Electrons) et par cathodoluminescence (détecteur centaurus) furent effectuées au microscope électronique à balayage (MEB) JEOL JSM-5910 LV du Laboratoire Magmas et Volcans (Clermont-Ferrand). Elles permettent de mettre en évidence des zonations des phases accessoires

se trouvant sur les lames minces et les plots. Dans ce but, les images BSE ont été acquises sur monazites et titanites et les images cathodoluminescence pour les apatites et les zircons. L'identification qualitative des différents minéraux dans les couronnes réactionnelles des monazites ont été faites grâce au détecteur EDS (Energy Dispersive Spectroscopy). Les analyses ont été réalisées à une distance de travail comprise entre 19 mm et 20 mm avec une tension d'accélération de 15 kV.

Principe et fonctionnement du MEB

L'imagerie du MEB se base sur les interactions électron-matière. Les électrons proviennent d'un filament mit sous tension, ils sont focalisés et balayent la surface de l'échantillon. En BSE, les électrons incidents réagissent avec les noyaux atomiques de l'échantillon bombardé et sont redirigés avec un angle proche de l'angle incident et une faible perte en énergie. Les interactions dépendent des numéros atomiques et donc de la composition de la phase bombardée. Pour une zone donnée, plus les masses atomiques seront élevées, plus l'image sera brillante. Si les masses sont faibles, l'image sera sombre (Reimer, 1998).

Les images par cathodoluminescence sont le résultat de l'intéraction entre les électrons émis par le MEB et le matériel bombardé. Ce matériel va émettre une radiation lumineuse dans le visible qui va être détectée par le détecteur OPEA.

4.5 La microsonde électronique

La microsonde électronique utilisée est une CAMECA SX100. Elle bombarde des électrons sur l'échantillon et possède quatre spectromètres disposés de chaque côté avec angle connu par rapport au faisceau. Les spectromètres sont à longueur d'onde (WDS, Wavelengh Dispersive Energy) et comportent un cristal analyseur dont les dimensions sont connues. Lors de l'analyse, les photons sont dirigés vers les cristaux analyseurs où ils sont diffractés. Une relation existe entre l'orientation du cristal et la longueur d'onde du photon, elle est donnée par la loi de Bragg (2).

$$2d\sin(\theta) = n\lambda \tag{2}$$

(**-**)

Où *d* est le distance inter-réticulaire du cristal, θ l'angle d'incidence entre le cristal et le faisceau de photons, λ la longueur d'onde de l'élément et *n* est le coefficient de diffraction qui est un nombre entier. Puis l'énergie est donnée par la loi de Planck (1).

Avant de faire des mesures sur des échantillons, l'instrument est calibré grâce à plusieurs standards. Ces standards, dont les valeurs sont connues, indiquent à l'appareil la relation entre le nombre de coup et la concentration pour chaque élément. Les analyses par microsonde ont été réalisées sur monazite, apatite et allanite. Durant ces sessions d'analyses, un standard secondaire a été analysé pour contrôler la qualité des données il s'agit de l'apatite Durango. L'ensemble des valeurs de ce standard sont en annexe (Annexe 2). Des cartes chimiques ont également été effectués sur des couronnes de déstabilisation autour des monazites afin de voir les concentrations relatives des différents éléments dans les différentes phases.

Selon les phases analysées et l'utilisation de l'appareil, les paramètres d'analyses variaient. Le tableau 3 présente les différents réglages en fonction de l'utilisation de la microsonde électronique. Les temps d'analyses et le choix du cristal analyseur en fonction de l'élément sont reportés en annexe (Annexe 3).

Utilisation	Monazite	Apatite	Allanite	Cartographie chimique
Tension d'accélération (kV)	15	20	20	20
Intensité (nA)	40	10	15	15
Taille faisceau (µm)	0.	5	0.	/

Tableau 3 : Tableau récapitulatif des conditions d'analyses en fonction de l'utilisation de l'appareil.

4.6 Spectromètre de masse à plasma à couplage inductif et source laser (LA-ICP-MS)

Le LA-ICP-MS est un système d'ablation laser qui est relié à un spectromètre de masse à plasma à couplage inductif. Le laser ablate une partie de l'échantillon et en envoie quelques nanogrammes grâce à un gaz vecteur d'He à l'ICP-MS. Arrivées dans l'ICP-MS, les liaisons des molécules sont rompues et les atomes sont ionisés par un plasma d'Ar à 8000 K. Les atomes ionisés sont accélérés par des lentilles ioniques et triés leurs masses. Cela est réalisé par un système de secteur magnétique (Element XR) ou un quadrupôle (Agilent 7500). Le système d'ablation laser est un Excimer ATL (Resonetics M-50E générant des impulsions laser ultra-courtes (<4ns) et de longueur d'onde 193 nm. Cette technique a été utilisée pour faire de la datation U-Th-Pb sur monazite (Section 5.4) en utilisant l'Agilent. En revanche, les teneurs en éléments en traces et les datations U-Pb sur zircon ont été acquise grâce à l'Element XR (Section 5.3). Les concentrations en ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁵U et ²³⁸U, des zircons et l'utilisation de petite taille de spot (U-

Pb et traces) nécessitaient l'utilisation de l'Element XR qui possède une meilleure sensibilité.

Le temps d'analyse des monazites était de 120 s : 30 s de bruit de fond, 60 s d'ablation et à nouveau 30 s de bruit de fond. Chaque séquence d'analyses commence et finit par un bloc de standard de monazite connue : 2 Trébilcok (Tomascak *et al.,* 1996), 2 Moacyr (Cruz, 1996), 2 Corfu (Corfu, 1988) et 2 Trébilcok. Durant chaque séquence, on analyse 3 Trébilcok et 1 Corfu toutes les six inconnues. Trébilcok est traité comme standard primaire alors que Moacyr et Corfu sont traités comme inconnus, et utilisés comme contrôle qualité.

Pour les mesures sur zircon, le temps d'analyse était de 120 s : 30 s de bruit de fond, 60 s d'ablation et à nouveau 30 s de bruit de fond. Chaque série d'analyses commence par un bloc de quatre standards primaires GSJ-1 (Jackson *et al.*, 2004) suivit de deux standards secondaires 91500 (Wiedenbeck *et al.*, 1995). Elles se clôturent par trois 91500 et quatre GSJ-1. Toutes les huit inconnus, deux GSJ-1 et 91500 sont traités en inconnus. Pour ce qui est des datations sur monazites et zircons, la masse 204 (mercure + plomb) était monitorée afin d'observer la présence de Pb commun dans le minéral. Les analyses possédant du plomb commun ont été supprimées lors du traitement de données.

Pour les mesures en éléments en traces sur apatite et allanite, les temps d'ablation étaient de 120 s : 30 s de bruit de fond, 75 s d'ablation et à nouveau 15 s de bruit de fond. Les mesures étaient faites par bloc de 20 ou 25 analyses avec en début et en fin deux analyses de GSE-1G (Jochum *et al.*, 2008) comme standard primaire. De plus, Durango (Marks *et al.*, 2012) et GSD-1G (Jochum *et al.*, 2008) étaient régulièrement analysés pendant chaque séquence d'analyses et étaient traités en inconnues pour contrôler la qualité des données.

Le tableau 4 résume les différents réglages des paramètres d'analyses liés à l'ablation laser avec la fluence, la fréquence et la taille du faisceau laser pour chaque phase.

Phase	Taille faisceau (µm)	Fluence (J/cm ²)	Fréquence (Hz)
Zircon (datation)	20	2,0	3
Monazite (datation)	20	5,7	1
Éléments en traces (apatite et allanite)	4 à 20	3,0 à 3,1	1 à 2

Tableau 4 : Tableau récapitulatif des différents réglages des paramètres

Toutes les données collectées ont été traité avec le logiciel Glitter (Griffin, 2008). Le calcium 43 ou 44 sont utilisés comme référence interne pour la normalisation des données pour les concentrations des éléments en traces dans les phases accessoires. L'ensemble des résultats pour le standard secondaires sont en annexe (Durango ; Annexe 4) pour les apatites et allanites.

Principe de la datation U-(Th)-Pb sur zircon et monazite

Le zircon peut facilement incorporer de l'U dans sa maille cristalline. La monazite contient naturellement du Th et peut également incorporer du l'U. Deux isotopes de l'U (²³⁸U et ²³⁵U) et un du Th (²³²Th) se désintègrent en un isotope distinct de Pb radiogénique (respectivement ²⁰⁶Pb, ²⁰⁷Pb et ²⁰⁸Pb) à une vitesse connue. La mesure in-situ des isotopes radiogéniques par rapport aux radioactifs permet de définir l'âge de formation du minéral. Dans la monazite, le Th contraint mieux les âges car il est 10 fois plus présent que l'U, c'est pourquoi la datation U-Th-Pb est privilégiée. Nous avons pris soin d'analyser le centre des grains de monazite afin de s'éloigner des textures de dissolution / précipitation en bordure de grain. En effet, il a été montré que ces phénomènes peuvent perturber le système U-Th-Pb en bordure de monazite (Montel *et al.*, 2000 ; Seydoux-Guillaume et al., 2002).

5 RÉSULTATS

L'ensembles des résultats des concentrations en roches totales des éléments majeurs et éléments en traces sont en annexe (éléments majeurs annexe 5 ; éléments en traces annexe 6)

5.1 Comparaison des éléments en traces en roche totale entre le LMV et le SARM

L'acquisition des données en éléments en traces des roches totale suit un protocole expérimental au LMV. Les mêmes échantillons ont donc été envoyés au SARM (Service d'Analyse des Roches et Minéraux) à Nancy afin d'avoir un point de comparaison. Le tableau en annexe X présente l'ensemble des résultats obtenus.

Figure 9 : Représentation graphique des éléments en traces en fonction du rapport d'analyse entre le LMV et le SARM. Les échantillons deux gneiss gris de l'affleurement 1 (LP-17-10 et LP-17-11), le leucosome (LP-17-14) et l'amphibolite (GLG-2) sont représentés. La zone grisée représente l'erreur minimale de 10 %.

La comparaison des concentrations pour les différentes analyses en fonction du laboratoire (Figure 9) montre des concentrations différentes pour les éléments plus léger que le Cs (Be, V, Cr, Co, Ni, Cu, Zn, Ga, As, Zr, Nb, Cd, Sn) à l'exception de Rb, Sr et Y (LMV / SARM \neq 1). Pour les masses plus lourdes, la plupart des résultats sont dans l'erreur. Le gneiss gris LP-17-14 est systématiquement moins concentré au LMV qu'au SARM en terres rares, mais la plupart des analyses sont dans l'erreur à l'exception de trois (Pr, Nd et Gd; Annexe 7.3). Le leucosome LP-17-11 montre également des divergences pour les terres rares et il est l'échantillon où les différences entre les deux

laboratoires sont les plus grandes. Pour ces quatre échantillons, une comparaison entre les deux laboratoires avec les erreurs est disponible en annexe 7

5.2 Les concentrations en roche totale

Les concentrations des éléments majeurs (Annexe 5) et des éléments en traces (Annexe 6) ont été mesurées pour les échantillons LP-17-10, LP-17-14, LP-17-20 et GLG-2. Une unique composition est renseignée pour les deux gneiss gris provenant de l'affleurement 2 (échantillon MAK-G2 ; Laurent *et al.*, 2015).

Les éléments majeurs

Les échantillons LP-17-10 et LP-17-14 sont acides (SiO₂>69 %) et riche en sodium (>4 %). Elles ont un rapport K₂O/Na₂O < 0,9 et sont pauvres en éléments ferromagnésiens (Fe₂O₃ + MgO + MnO + TiO₂ < 3,2 %). L'analyse LP-17-11 est assez similaire des deux précédentes, mais elle est riche en K : K₂O/Na₂O >1,1. GLG-2 est pauvre en silice (<48 %) et est riche en ferromagnésiens (Fe₂O₃ + MgO + MnO + TiO₂ > 23 %). Ces compositions classent les gneiss dans les champs des trondjhemites...

D'après Moyen et Martin (2012), les TTGs sont riches en silice (SiO₂ > 64 %, environ 70 % pour la plupart) et en sodium (3 à 7 % Na₂O) et pauvres en potassium (K₂O/Na₂O < 0,5). D'après cette nomenclature, les échantillons LP-17-10 et LP-17-14 sont des TTGs riches en K. GLG-2 est une amphibolite et LP-17-11 est trop riche en K. Les deux gneiss gris provenant de l'affleurement 2 (Swasa-96 et Swasa-98), dont la composition est communiquée par Laurent et collaborateurs (2015) sont également des TTGs.

Les éléments en traces

Les gneiss (LP-17-10 et LP-17-14) ont des spectres de REE enrichis en LREE (La > 33 ppm) et appauvris en terres rares lourdes (HREE = Heavy Rare Earth Element ; Yb < 0,4 ppm) ce qui induit un fort fractionnement La/Yb. D'après Moyen et Martin (2012) les TTGs sont caractérisés par un fort fractionnement des HREE par rapport aux LREE (La_{moyen} = 31,4 ppm ; Yb_{moyen} = 0,64 ppm) et ne présentent pas d'anomalie en Eu (Figure 10). Ces deux échantillons ont donc des caractérisiques en traces similaires aux TTG.

Figure 10 : Spectres des terres rares normalisés à la Terre chondritique (Anders et Grevesse, 1989) en échelle logarithmique. Légende : Champ bleu = champ des TTGs entre la moyenne des TTGs basses pressions (limite haute) et les TTGs hautes pressions (limite basse) d'après les données de Moyen et Martin (2012) ; Rouge = LP-17-10 ; Vert = LP-71-14 ; Rose = Swasa-96 et 98 ; Orange = LP-17-11 ; Noir = GLG-2.

En se basant sur les classifications des TTGs hautes pressions et basses pressions développées par Moyen (2011) et nos spectres de terres rares (Figure 9). Les échantillons LP-17-14 et LP-17-11, qui ont sensiblement les mêmes concentrations, sont des TTGs de basses pressions d'après les terres rares légères et de hautes pressions d'après les lourdes (Figure 10). Cependant, les autres systèmes discriminants basés sur les concentrations en Sr et Na₂O, en fond des TTGs de moyenne à basse pressions. Les deux autres gneiss gris de l'affleurement 2 (en rose sur la figure 10).

L'échantillon LP-17-11 est plus pauvre en LREE (La = 4,11 ppm) et à une valeur similaire aux gneiss en HREE (Yb_N = 0,42). Il présente une anomalie positive en europium. L'échantillon a des teneurs en LREE et HREE équivalentes (La_N = 1,29 ppm et Yb_N = 1,32 ppm).

5.3 Les datation des gneiss gris pas U-Pb sur zircon

Un tableau récapitulatif des analyses U-Pb sur les zircons est en annexe 8.

LP-17-10

Dans l'échantillon LP-17-10, 33 zircons ont été analysés. Ils ont une taille compris entre 60 et 150 µm avec une forme automorphe prismatique. De plus, la plupart montrent une zonation oscillatoire. Sur ces 33 zircons, seulement une datation est concordante (²⁰⁷Pb/²³⁵U sur ²⁰⁶Pb/²³⁸U) à 2962±30 Ma. L'âge ²⁰⁷Pb/²⁰⁶Pb 2974±64 Ma (Figure 11) de la même analyse est cohérent avec l'âge concordant. Il est important de noter que la zone analysée semble être un cœur hérité (Figure 11B). À cela s'ajoute 13 analyses discordantes. Les analyses non représentées contiennent du Pb commun.

Figure 11 : (A) Graphique de la concordia (²⁰⁷Pb/²³⁵U sur ²⁰⁶Pb/²³⁸U) associé à l'échantillon LP-17-10. L'ellipse pleine représente l'analyse concordante, les ellipses en pointillées représentent les analyses discordantes. Les erreurs des ellipses sont à 2σ. (B) Photo MEB avec la cathodoluminescence du zircon daté avec un âge concordant. Le rond rouge représente la zone ablatée et l'âge ²⁰⁷Pb/²⁰⁶Pb associé est donné en millions d'années avec une erreur de 2σ.

LP-17-14

Sur l'échantillon LP-17-14, 34 zircons ont été analysés. La taille de ces zircons varie de 50 µm à 160 µm avec une exception qui mesure environ 800 µm de long. La plupart sont automorphes et prismatiques. Beaucoup de ces zircons présentent des zonations oscillatoires et des fractures. 25 analyses complètes ont été effectuées, 11

d'entre elles sont concordantes et huit sont discordantes, les deux autres ayant été écartées car elles contiennent du Pb commun. L'âge concordant U-Pb de l'échantillon est de 2862±12 Ma (MSWD=0.66). L'échantillon contient également quatre cœurs hérités (Figure 12) qui ont des âges ²⁰⁷Pb/²⁰⁶Pb compris entre 3016±51 Ma et 3102±52 Ma.

Figure 12 : (A) Graphique de la concordia (²⁰⁷Pb/²³⁵U sur ²⁰⁶Pb/²³⁸U) associé à l'échantillon LP-17-14. Les ellipses pleines représentent les âges concordants, les ellipses en pointillées représentent les âges discordants, les ellipses rouges représentent les cœurs hérités. Les erreurs des ellipses sont à 2σ. (B) Photo MEB avec la cathodoluminescence de quelques zircons datés. Les ronds représentent les zones ablatées associés à leurs âges ²⁰⁷Pb/²⁰⁶Pb. Les ronds rouges correspondent à un des cœurs hérités. Les âges associés sont donnés en millions d'années avec une erreur de 2σ.

LP-17-20

Sur l'échantillon LP-17-20, sept zircons ont été analysés. Leurs tailles varient de 60 µm à 120 µm. En, général, les zircons présentent des zonations oscillatoires. Deux analyses sont concordantes et quatre discordantes. La régression linéaire de quatre analyses (sur la droite en pointillée Figure 13A) donne un intercept supérieur à 2891±14 Ma (MSWD =0,76). L'échantillon contient également un cœur hérité concordant qui est daté à 3391±50 Ma par ²⁰⁷Pb/²⁰⁶Pb (Figure 13).

Figure 13 : (A) Graphique de la concordia (²⁰⁷Pb/²³⁵U sur ²⁰⁶Pb/²³⁸U) associé à l'échantillon LP-17-20. Les ellipses pleines représentent les âges concordants, les ellipses en pointillées représentent les âges discordants, l'ellipse rouge représente le cœur hérité daté. Les erreurs des ellipses sont à 2σ. La droite en pointillée représente la régression linéaire (la discordia) faite à partir des quatre analyses se trouvant dessus. (B) Photo MEB avec la cathodoluminescence de deux zircons datés. Les ronds représentent les zones ablatées, le rouge représente le cœur hérité. Les âges associés sont donnés en millions d'années avec une erreur de 2σ dans le système ²⁰⁷Pb/²⁰⁶Pb.

5.4 Les datation des gneiss gris par U-Th-Pb sur monazite

Un tableau récapitulatif des analyses U-Th-Pb sur les monazites est en annexe 9.Sur la lame Swasa-89, sept monazites ont été analysées pour un total de 14 analyses. Six d'entre elles sont utilisées pour définir l'âge concordant. Les huit autres sont ignorées. Dans le système 207 Pb/ 235 U sur 206 Pb/ 238 U, l'intercept supérieur de la régression linéaire est de 2876±31 Ma (Figure 15). Un âge concordant à partir de ces six analyses est défini à 2857± 14 Ma (MSWD_(C+E) = 1,3).

²⁰⁷Pb/²³⁵U

Figure 14 : (A) Graphique de la concordia (²⁰⁷Pb/²³⁵U sur ²⁰⁶Pb/²³⁸U) associé à la lame Swasa-89. Les ellipses pleines et grisées représentent les analyses utilisées afin de tracer la discordia, L'ellipse en pointillée et vide représente l'analyse non prise en compte pour tracer la discordia. Les erreurs des ellipses sont à 2σ. (B) Photo MEB en BSE de deux monazites datées. Les ronds blancs représentent les zones ablatées. Les âges ²⁰⁸Pb/²³²Th associés sont donnés en millions d'années avec une erreur de 2σ.

Sur la lame Swasa-91, 10 monazites ont été analysées. Elles font environ 20 à 30 µm de diamètre, ont une forme elliptique à ovale. Cependant, quelques-unes ont une croissance localement interrompue due à la présence d'autres phases accessoires comme le zircon. Sur ces monazites, 23 analyses ont été effectuées, 20 d'entre elles ont été utilisées pour tracer la régression linéaire (discordia). L'âge obtenu dans le système ²⁰⁷Pb/²³⁵U sur ²⁰⁶Pb/²³⁸U est de 2843±16 Ma (MSWD=1,3 ; Figure 14A) pour l'intercept supérieur. De plus, un âge concordant de la monazite dont l'ellipse est visuellement la plus concordante, a été calculé à 2873±36 Ma.

La dispersion des analyses sur le graphique vers des âges plus récents par rapport aux âges concordants peut être expliquée par une perte en Pb. Mais aussi par un évènement métamorphique qui a provoqué une légère baisse en Pb radiogénique au sein des monazites. Ceci est décrit par Vézinet et collaborateurs (2017) qui montrent que des monazites, à proximité de la ZMS, donc 50 km plus au Nord de l'affleurement, ont été réinitialisées à 2760 Ma. Ce même évènement a pu être partiellement enregistré par ces monazites, expliquant la légère dispersion vers la gauche sur le graphique.

Figure 15 : (A) Graphique de la concordia (207 Pb/ 235 U sur 206 Pb/ 238 U) associé à la lame Swasa-91. Les ellipses pleines représentent les analyses utilisées pour tracer la discordia, les ellipses vides représentent les analyses non utilisées pour tracer la discordia. Les erreurs des ellipses sont à 2 σ . (B) Photo MEB en BSE de deux monazites datées. Les ronds blancs représentent les zones ablatées. Les âges 208 Pb/ 232 Th associés sont donnés en millions d'années avec une erreur de 2 σ .

5.5 Les concentrations en éléments en traces des phases accessoires

5.5.1 Les apatites

Les concentrations des éléments en traces dans les apatites sont des données acquises par LA-ICP-MS en analyse in-situ. Afin de simplifier la lisibilité des figures, les échantillons « Swasa » et leurs analogues « LP-17 » sont regroupés dans les graphiques. L'ensemble des données LA-ICP-MS sur les apatites est en annexe 9, ceux de la microsonde électronique sont en annexe 10. Cette section est basée sur les données LA-ICP-MS.

Gneiss gris : Swasa-89 et Swasa-91 (Affleurement 1)

Les spectres de terres rares normalisés obtenus pour les apatites dans Swasa-89 et Swasa-91 (Figure 16A et 16B) forment un groupe homogène de composition à l'exception de deux spectres plus enrichis mais parallèle au groupe principal. Pour ces deux échantillons, les spectres ont une forme convexe avec des teneurs moyennes en La de ~800 ppm, et des teneurs moyennes en Yb de ~450 ppm pour Swasa-89 et ~700 ppm pour Swasa-91 (Figure 17). Ils ont une anomalie négative en Eu ($Eu/Eu^* = Eu/\sqrt{Sm * Gd}$)

marquée, respectivement $(Eu/Eu^*)_N \approx 0,37$ et $(Eu/Eu^*)_N \approx 0,32$. Cela implique un plus grand fractionnement des HREE dans l'échantillon Swasa-89 : le rapport $(La/Yb)_N$ moyen dans Swasa-89 est de 1,93 alors qu'il est de 1,08 dans Swasa-91. La pente des LREE définie par le rapport $(La/Sm)_N$ est constant dans Swasa-89 ($(La/Sm)_N \approx 0,65$) et varie entre 0,21 et 0,57 dans Swasa-91.

Gneiss gris : Swasa-96 et Swasa-98 (Affleurement 2)

Les apatites analysées dans les échantillon Swasa-96 et Swasa-98 (Figure 16C et 16D) ont des spectres de terres rares similaires montrant un appauvrissement des LREE par rapport aux HREE. Les valeurs en La varient entre 64 et 1125 ppm dans Swasa-96. Dans Swasa-98, les concentrations en La sont en général plus faibles et varient entre 21 et 785 ppm. Cela montre que ces apatites sont bien plus pauvres en LREE que Swasa-89 et Swasa-91, et qu'elles sont hétérogènes dans leurs concentrations en LREE (Figure 17).

Ces apatites présentent une anomalie négative en europium, la valeur moyenne d'(Eu/Eu*)_N≈0,45 dans Swasa-96 et (Eu/Eu*)_N≈0,59 dans Swasa-98. Le ratio (La/Sm)_N est hétérogène au sein de ces deux échantillons, dans Swasa-96 (La/Sm)_N=0,07-0,78 et (La/Sm)_N=0,04-0,33 dans Swasa-98. Le fractionnement des masses plus lourdes est constant comme le montre les rapports (Gd/Yb)_N : dans Swasa-96 (Gd/Yb)_N≈2,21 et dans Swasa-98 (Gd/Yb)_N≈2,9.

Plusieurs groupes se distinguent pour ces apatites avec le fractionnement inégal du ratio (La/Sm). Les alternances cœurs/bordures qui ont été observées (section 3.2.1) ne sont pas visibles sur les spectres de terres rares. Ces oscillations ne peuvent donc pas expliquer les hétérogénéités en concentrations des LREE.

Amphibolite : Swasa-95

Les apatites analysées provenant de l'amphibolite (Swasa-95 ; Figure 16E) sont toutes plus appauvries que les apatites provenant des quatre gneiss gris précédents (Figure 17) avec une concentration moyenne en La est de 159 ppm. À l'inverse des gneiss gris, l'anomalie négative en Eu est faible [(Eu/Eu*)_N=0,61-0,98]. Tous les spectres fractionnent, le ratio (La/Yb)_N varie de 2,47 à 5,14.

Figure 16 : Spectres des terres rares normalisés aux chondrites (Anders et Grevesse, 1989) des apatites des différents échantillons. (A) Swasa-89, (B) Swasa-91, (C) Swasa-96 et (D) Swasa-98 sont des gneiss gris. (E) Swasa-95 est une amphibolite et (F) LP-17-11 est un gneiss blanc.

Figure 17 : Représentation graphique des concentrations de La et Yb en ppm dans les apatites décrites. *Gneiss blanc : LP-17-11*

Les apatites de l'échantillon LP-17-11 (Figure 16F), un gneiss blanc, ont des spectre en terres rares présentant de fortes anomalies négatives en Eu : $(Eu/Eu^*)n$ moyen vaut 0,07. Les concentrations en LREE sont très hétérogènes (La=100-3408 ppm) tous comme celles en HREE (Yb=198-1638 ppm ; Figure 16). Les spectres sont donc très hétérogènes et fortement fractionnés des deux côtés de l'anomalie en Eu. Pour les masses plus faible que l'Eu, le rapport (La/Sm)_N varie entre 0,2 et 0,74. Pour les masses plus lourdes, le rapport (Gd/Yb)_N est compris entre 2,39 et 17,73

5.5.2 Les monazites, allanites et apatites secondaires

Les concentrations des éléments en traces de ces phases sont acquises par microsonde électronique pour l'apatite secondaire, l'allanite et la monazite (respectivement annexes 11, 12, et 14). L'allanite fut également acquise par LA-ICP-MS (Annexe 14) tout comme l'apatite secondaire, cependant pour l'apatite, les données sont mauvaises et ne peuvent être traitées.

Figure 18 : Spectres de terres rares normalisés à la valeur chondritique (Anders et Grevesse, 1989) dans les échantillons Swasa-89 (rouge) et Swasa-91 (vert). (A) Représentation des données acquises par microsonde électronique sur les monazites (triangle), allanites (cercle) et apatites secondaires (carré) et (B) les données issues des analyses LA-ICP-MS des allanites.

Les monazites analysées sont riches en LREE (La > 13 % poids) et ont un spectre qui fractionne vers les masses plus lourdes $(La/Gd)_N=19,45-102$ pour Swasa-89 et $(La/Gd)_N=16-47,42$ pour Swasa-91. L'appauvrissement est donc plus important pour les monazites de Swasa-89 (Figure 18A).

Les mesures faites par LA-ICP-MS (Figure 18B) sur les allanites montrent des teneurs en La allant de (1,5 % poids < La < 9 % poids) et un fractionnement des spectres de terres rares. Pour comparer, dans Swasa-89 le fractionnement (La/Gd)_N=86,02-142,67 et dans Swasa-91 (La/Gd)_N=11,46-43,33. Sur l'ensemble des spectres des allanites, il y a une anomalie négative en Eu similaires : $(Eu/Eu^*)_N\approx0,21$ en moyenne dans Swasa-89 et $(Eu/Eu^*)_N\approx0,20$ en moyenne sur Swasa-91. De plus, le fractionnement observé se poursuit aux HREE avec (La/Yb)_N=3499-5227 dans Swasa-89 et (La/Yb)_N=641-4282 dans Swasa-91. Cela montre que l'appauvrissement en HREE est plus important au sein de Swasa-89 que de Swasa-91.

Les apatites secondaires analysées par microsonde électronique l'ont été pour seulement les deux terres rares les plus légères : le lanthane et le cérium. Les données montrent deux groupes d'apatites secondaires. Un premier très riche en LREE : 7741 ppm < La < 22040 ppm et un second composé de deux analyses à 1325 ppm et 1538 ppm pour le La. Ces deux dernières mesures sont faites sur une même couronne d'une monazite se trouvant en inclusion dans du quartz. Les apatites dans les couronnes métamorphiques autour des monazites sont en moyennes 10 fois plus riches en LREE que les apatites magmatiques des mêmes gneiss gris (pour le premier groupe décrit), dont la concentration moyenne est de 798 ppm en La.

6 DISCUSSION

6.1 Le protocole expérimental de chimie

Durant cette étude, nous voulions tester (i) le nouveau protocole utilisant le fondant LMV et (ii) la reproductibilité de l'analyse des éléments supérieurs à la masse Rb. Nous avons particulièrement prêté attention à la reproductibilité des concentrations en Zr et Hf. En effet, ces éléments permettaient de monitorer si le fondant avait digéré les minéraux les plus résistants (zircons). Au vu de nos résultats, le fondant permet bien de casser les liaisons du zircon car les concentrations LMV sont dans l'incertitude de celles du SARM (Annexe 7).

L'échantillon LP-17-11 n'est pas toujours dans l'erreur de 10 % concernant ces éléments, cela est probablement dû à sa faible concentration. L'échantillon LP-17-14 a pu subir une perte pendant le protocole de chimie, expliquant ses concentrations plus faibles.

Il serait intéressant de dupliquer nos analyses au sein du LMV et envoyer ces échantillons à plusieurs autres laboratoires afin de finir de valider ce protocole. Ce protocole montre que les mesures sur les masses supérieures au Rb sont globalement satisfaisantes, indiquant que l'utilisation des données LMV est possible pour cette étude.

6.2 La signification des âges U-Th-Pb des zircons et monazites

La figure 19 montre que, considérant les incertitudes sur les données, tous les âges obtenus dans les gneiss gris se superposent, que ce soit sur les zircons ou les monazites. Cela indique que les gneiss gris de l'affleurement 1 ont été générés lors d'un événement magmatique commun se produisant entre 2843 Ma à 2861 Ma. Une autre conclusion importante est la confirmation que zircons et monazites ont co-cristallisés dans ces échantillons. C'est un point important dans ces échantillons qui ont été affectés par des événements métamorphiques de haute température.

Une exception est l'unique âge concordant de l'échantillon LP-17-10 (analogue Swasa-89) à 2962±30 Ma qui est considéré comme étant non représentatif de l'échantillon. En effet, la zone analysée du zircon est interprétée comme étant texturalement un cœur hérité et n'est donc pas représentative de l'âge de la roche. En revanche, l'âge concordant U-Pb définis par les monazites de la même lithologie est cohérent avec les âges magmatiques des autres zircons et monazites des gneiss gris (Figure 19).

40

Figure 19 : Tableau chronologique incluant toutes les analyses effectuées (à l'exception du cœur hérité dans LP-17-20 daté à 3391±50 Ma par ²⁰⁷Pb/²⁰⁶Pb) sur les zircons et monazites au sein des trois échantillon. À cela s'ajoute la datation de l'amphibolite GLG-2 (Laurent *et al.,* 2015). Chaque mesure est représentée avec son erreur (longueur de trait) à 2σ .

L'événement enregistré aux alentours de 2850 Ma correspond au stade 3 (2.9-2.75 Ga) de l'histoire magmatique du bloc de Pietersburg qui correspond à un épaississement de la croûte continentale associé à une forte déformation. L'amphibolite GLG-2 pré-date la formation des gneiss gris et est datée à 2942±8 Ma (U-Pb ; Laurent et al., 2015). Il est possible que le cœur hérité retrouvé au sein de l'échantillon LP-17-10 ait pu être intégré lors de ce même évènement géodynamique. Les cœurs hérités au sein des échantillons LP-17-20 (non représenté sur la figure 19 par soucis de lisibilité) et Swasa-91 sont des témoins du stade 1 magmatique (voir session 1.3) qui ont été pris dans les gneiss lors de leurs mise en place.

6.3 La signature particulière des apatites de TTG

Un reflet des phases qui co-cristallisent ?

Les spectres de terres rares des TTGs sont caractérisés par un fort enrichissement des LREE par rapport aux HREE (Figure 10 ; (La/Yb)N=34,2 Moyen et Martin (2012)) . À contrario, les apatites de ces TTGs ont des spectres de REE beaucoup moins fractionnés en terres rares (Figure 16). Les bilans de masse des terres rares dans ces échantillons ne peuvent donc être expliqués que par la présence d'une autre phase de terres rares légères pendant la cristallisation de l'apatite. Dans ces gneiss, les autres phases porteuses de terres rares identifiées sont le zircon, l'allanite (et l'épidote) et la monazite. Le zircon va essentiellement capter de l'U, un peu de Th et des HREE. L'allanite est

secondaire et ne peut donc pas être la phase qui pompe les LREE. Il ne reste plus que la monazite qui est une phase riche en LREE et Th. Les datations sur monazite effectuées dans ce travail confirment les observations texturales et prouvent que la monazite est un minéral primaire dans ces échantillons.

Les gneiss gris étudiés ont des compositions d'apatites définissant deux groupes correspondant aux deux affleurements échantillonnés (Figure 17). En effet, les deux gneiss gris de l'affleurement 2 (Swasa-96 et 98) montrent un appauvrissement progressif des concentrations en Th et La dans les apatites (flèche noire) indiquant une cristallisation simultanée de l'apatite avec la monazite. En revanche, les gneiss gris de l'affleurement 1 sont regroupés et ne montrent aucun appauvrissement simultané de ces éléments (Figure 20). Cela tend à indiquer que la monazite avait fini de cristalliser lors de la cristallisation de l'apatite. La cristallisation en amont de la monazite a fortement appauvri le liquide en LREE. Au vue de nos données, il apparaît clairement que la monazite joue un rôle prépondérant sur la signature en terres rares des apatites.

Figure 20 : Représentations graphiques du Th par rapport au La dans les apatites provenant des gneiss gris des deux affleurements. L'affleurement 1 ne montre pas de tendance d'appauvrissement simultanée entre le Th et le La, la monazite avait donc fini de cristalliser. L'affleurement 2 montre une co-cristallisation de l'apatite et de la monazite (flèche noire). Abréviations : Ap = apatite ; Mnz = monazite.

Même s'il existe des distinctions chimiques au sein des apatites des différents gneiss gris, ces apatites de TTGs sont systématiquement plus appauvries que les apatites des granitoïdes post-Archéens de la littérature, y compris pour les granitoïdes où la monazite est présente. Cela signifie qu'un autre facteur participe à la signature particulière

des TTGs. Pourquoi la monazite va préférentiellement cristalliser dans ces magmas et pomper la plupart des LREE ? Des études antérieures ont montré que l'indice de saturation en l'aluminium (ASI (3)) d'un magma avait un impact sur la chimie et la cristallisation de la monazite. L'influence de l'ASI sur la composition de l'apatite est montrée dans un diagramme La dans les apatites vs l'ASI de la roche totale (Figure 21). Quand ASI<1, les apatites peuvent avoir des teneurs en LREE très élevées (jusqu'à 3400 ppm), ce qui n'est pas le cas quand ASI>1 où les teneurs en LREE des apatites vont être systématiquement très faibles (La < 900 ppm ; Figure 21). L'ASI est un rapport molaire définit par la relation suivante :

$$\frac{Al}{(Ca-3,33*P)+Na+K}$$

Des études se focalisant sur des granitoïdes ont montré que la monazite peut cristalliser tôt dans la séquence de cristallisation (Sha et Shappell, 1999) et ont suggéré des coefficients de partage monazite / liquide (Kd) très importants pour les LREE : entre 1300 et 2800 dans des magmas pour lesquels ASI > 1 à 800 °C et 0,2 GPa (Montel, 1986 ; Sha et Shappell, 1999). Ce qui a pour impact de fortement appauvrir la teneur en LREE des apatites (Sha et Shappell, 1999 ; Hoskin *et al.*,2000 ; Belousova et al.2001 ; Chu *et al.*,2009 ; Miles *et al.*, 2013).

La figure 21 montre également que pour une valeur ASI donnée, les apatites provenant des TTGs sont toujours plus appauvries que celles provenant des granitoïdes peralumineux post-Archéens se trouvant dans la littérature. La seule présence de monazite et l'ASI de nos échantillons ne peuvent pas expliquer ces appauvrissements. La spécificité des compositions des TTGs et peut être leurs caractéristiques sodiques importantes par rapport aux autres magmas jouent peut-être un rôle dans les coefficients de partage entre l'apatite et liquide. En effet, les faibles rapports Ca/Na dans les granitoïdes favorisent la mise en place de la monazite et sa stabilité (Budzyn *et al.,* 2011). À l'heure actuelle, les données expérimentales manquent pour approfondir cette question.

Figure 21 : Représentation graphique de la concentration en La dans l'apatite en fonction de l'ASI de la roche totale. Les ronds bleus représentent les TTGs, les ronds noirs les roches peralumineuses et les croix grises les roches métalumineuses (données communiquées par Bruand). Les carrés de couleurs représentent les mesures de cette étude,

Les concentrations en strontium : une signature de source

Dans la littérature, de nombreuses études montrent une corrélation entre la concentration en Sr de l'apatite et celle de la roche totale (Belousova et al, 2001 ; Chu *et al.*, 2009). De plus, il a été montré que pour une roche de type TTG, il est possible de relier la teneur en Sr de la roche totale avec la profondeur de fusion de sa source (métabasalte ; Moyen, 2011). En effet, plus la fusion est profonde, plus le plagioclase sera instable et donc relâchera du Sr ce qui enrichira le liquide TTG. D'autres marqueurs discriminants des TTGs hautes pressions des TTGs basses pressions ont été soulignés dans la littérature (ex : concentration en Na₂O élevée...). Une des spécificités des apatites

Figure 22 : (A) Représentation graphique des concentrations en Yb et Sr dans les apatites. Les données des apatites métalumineuses et peralumineuses post Archéenne ainsi que des TTGs sont communiquées par Bruand. (B) Représentation géodynamique (dans l'hypothèse d'une subduction) des signatures TTGs à basses pressions et (B') hautes pressions (d'après Martin, 1998). Abréviations : HP : hautes pressions ; MP : moyennes pressions ; BP : basses pressions ; C.C : croûte continentale ; C.O : croûte océanique ; m.s : soludus du manteau hydraté.

Archéennes par rapport aux apatites post-Archéennes est leurs enrichissements en HREE (Yb dans Figure 22A). L'incorporation préférentielle de terres rares lourdes dans les apatites Archéennes est probablement due à une forte activité du Si et du Na dans le liquide TTG (Pan et Fleet, 2002 ; Antoine, 2018). En comparant les teneurs en Sr et Yb dans des apatites de granitoïdes Archéens et post-Archéens, plusieurs conclusions peuvent être faites

(i) Elles discriminent les granitoïdes peralumineux des métalumineux.

(ii) Les TTGs définissent des domaines différents : (1) Les TTGs de bassesmoyennes pressions et (2) ceux de hautes pressions (données de cette étude et de la littérature ; Figure 22A). Les apatites de l'affleurement 2 montrent qu'il s'agit de TTGs hautes pressions enrichis en Sr.

Il est possible de relier ces TTGs à des processus géodynamiques (Figure 22B ; hypothèse d'une subduction à l'Archéen). Les TTGs de hautes pressions indiquant une fusion plus profonde car le plagioclase se déstabilise avec la profondeur. Cela indique que la Terre a refroidit par rapport à la genèse des TTGs de basses pressions car il faut amener le basalte à plus grande profondeur pour le faire fondre (Figure 22B ; Martin, 1998). Ce refroidissement peut être montré plus précisément avec les apatites en inclusions dans des zircons détritiques ou remaniés (Antoine, 2018). L'âge de l'apatite correspond à celui du zircon et il est possible de caractériser la provenance du liquide TTG grâce à l'apatite et ainsi, mieux caractériser le refroidissement de la Terre.

6.4 Monazites et couronnes de déstabilisations

Beaucoup des monazites observées dans les gneiss gris ont une couronne de déstabilisation composée d'apatite, grains de thorite, allanite et épidote riche en terre rare. Dans la littérature ces couronnes de réactions sont décrites dans des granites récents en faciès amphibolitique (Finger *et al.*, 1998). Broska et Siman (1997) en décrivent où dans une même roche, la réaction est partielle ou totale, comme dans le cadre de cette étude. Finger et collaborateurs (1998) indiquent que le Ca nécessaire à la formation de l'apatite pourrait provenir de la déstabilisation de l'anorthite et que le Fe nécessaire à l'allanite et l'épidote pourrait provenir de la biotite ou bien sont amenés par un fluide, ce qui est plus probable. L'apport de ce Ca pour des roches, où le ratio CaO/Na2O est faible, est primordial pour dissoudre la monazite (Budzin *et al.*, 2011).

Beaucoup d'expériences ont été menées sur la transition monazite / allanite. Les résultats montrent que celle-ci dépend de plusieurs facteurs : la température, la pression et l'acidités des fluides (Ayers et Watson, 1991). Pour une pression fixée, la monazite se déstabilise en allanite entre 400 et 550 °C en fonction de la teneur initiale en CaO de la roche totale et du fluide (Budzyn *et al.*, 2011). Au-delà de 610 °C environ (roche totale : CaO/Na₂O > 0,94 ; Janots *et al.*, 2008), l'allanite se déstabilise en monazite. Ceci est en accord avec les travaux de Janots et collaborateurs (2008) qui situent la transition monazite / allanite en faciès amphibolitique. Dans les gneiss gris des deux affleurements, aucune trace de monazite secondaire n'a été observée, indiquant que la température n'a pas excédée les 610 °C.

À part la présence de ces couronnes secondaires, aucun évènement métamorphique n'est pétrologiquement visible au sein des lames minces. Si on considère les quelques études décrivant des textures identiques et une étude expérimentale récente de Budzyn et al. (2011) ont peut contraindre les conditions métamorphiques dans le facies amphibolitique (400 à 600 °C). Pour dater cet événement métamorphique, il faudrait analyser les apatites ou allanites qui se sont formées lors de cet évènement. Or, la petite taille de ces objets (< 5 µm) les rend très difficilement analysables. De plus, l'apatite contient de nombreuses inclusions de thorite rendant son analyse impossible.

Il est intéressant de noter que de rares monazites avec des textures coronitiques similaires à celles identifiées dans cette étude, ont été récemment observées dans des lames minces des gneiss d'Acasta (Canada ; Antoine, stage de M2R 2018). Or lors, de ce précédant travail, le caractère primaire de ces monazites n'avait pas pu être vérifié. L'étude pétrologique et les datations effectuées lors de mon travail, prouvent que la monazite est primaire et qu'elle peut être utilisée comme alternative pour dater ces échantillons Archéens quand les zircons sont métamictes. Cependant il est impératif de faire une étude sur lame mince, car les monazites sont 10 fois plus petites que les zircons et n'ont jamais été observées dans les séparas.

7 CONCLUSION

Les analyses U-(Th)-Pb sur zircons et monazites ont permis de dater les gneiss de l'affleurement 1 entre 2.89 Ga et 2.85 Ga. En intégrant les données de la littérature, la mise en place des composants de cet affleurement se fait entre le stade 2 et le stade 3 de l'histoire magmatique du BP. De plus ces datations (et les études texturales) prouvent que les monazites sont primaires au sein des roches type TTG et qu'elles peuvent être utilisées afin de dater la formation des roches. La couronne de déstabilisation autour de la monazite témoigne d'un évènement métamorphique en faciès amphibolitique. Cet évènement n'a pas pu être daté.

L'étude des apatites a permis de montrer qu'il est possible de tracer la source du magma grâce à ses concentrations en terres rares. En effet, les données montrent que la monazite cristallise avant ou co-cristallise avec l'apatite, impactant la signature en LREE de l'apatite. En ajoutant les données de la littérature, il est évident que la roche totale joue un rôle prépondérant dans la cristallisation de la monazite et donc sur les teneurs en LREE dans l'apatite. De plus, cette étude montre la concentration en Sr dans l'apatite est sensible à la profondeur de fusion de la source des TTG. Cela à des implications pour le traçage de source dans des travaux futurs en contexte détritique.

8 RÉFÉRENCES

- Anders, Edward, et Nicolas Grevesse. « Abundances of the Elements: Meteoritic and Solar ». *Geochimica et Cosmochimica Acta* 53, nº 1 (janvier 1989): 197-214.
- Antoine, Clémentine. « Les éléments en traces de l'apatite : développement de nouveaux traceurs de l'évolution crustale de la croûte continentale Archéenne (3,2-4,0 Ga) », Master 2 (2018).
- Ayers, JC, et Watson, EB. « Solubility of Apatite, Monazite, Zircon, and Rutile in Supercritical Aqueous Fluids with Implications for Subduction Zone Geochemistry ». *Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences* 335, nº 1638 (15 mai 1991): 365-75.
- Belousova, E. A., S. Walters, W. L. Griffin, et S. Y. O'Reilly. « Trace-element Signatures of Apatites in Granitoids from the Mt Isa Inlier, Northwestern Queensland ». *Australian Journal of Earth Sciences* 48, nº 4 (août 2001): 603-19.
- Boss, Charles B, et Kenneth J Fredeen. « Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry », s. d., 120.
- Broska, Igor, et Pavol Siman. « THE BREAKDOWN O. MONAZITE IN THE WEST-CARPATHIAN VEPORIC ORTHOGNEISSES AND TATRIC GRANITES », (1997)
- Budzyn, B., D. E. Harlov, M. L. Williams, et M. J. Jercinovic. « Experimental Determination of Stability Relations between Monazite, Fluorapatite, Allanite, and REE-Epidote as a Function of Pressure, Temperature, and Fluid Composition ». *American Mineralogist* 96, nº 10 (1 octobre 2011): 1547-67.
- Cherniak, D.J. « Rare Earth Element Diffusion in Apatite ». *Geochimica et Cosmochimica Acta* 64, nº 22 (novembre 2000): 3871-85.
- Chu, Mei-Fei, Kuo-Lung Wang, William L. Griffin, Sun-Lin Chung, Suzanne Y. O'Reilly, Norman J. Pearson, et Yoshiyuki lizuka. « Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids ». *Journal of Petrology* 50, nº 10 (octobre 2009): 1829-55.
- Corfu, F. « Differential Response of U-Pb Systems in Coexisting Accessory Minerals, Winnipeg River Subprovince, Canadian Shield: Implications for Archean Crustal Growth and Stabilization ». *Contributions to Mineralogy and Petrology* 98, nº 3 (mars 1988): 312-25.
- Cruz, M.J., Cunha, J.C., Merlet, C., Sabaté, P., 1996. Dataçao pontual das monazitas daregiao de Itambe, Bahia, através da microssonda electrônica. XXXIX CongressoBrasileiro de Geologia, pp. 206–209.

- Eglington, B. M. « The Kaapvaal Craton and Adjacent Orogens, Southern Africa: A Geochronological Database and Overview of the Geological Development of the Craton ». *South African Journal of Geology* 107, nº 1-2 (1 juin 2004): 13-32.
- Finger, Fritz, Igor Broska, Malcolm P. Roberts, et Andreas Schermaier. « Replacement of Primary Monazite by Apatite-Allanite-Epidote Coronas in an Amphibolite Facies Granite Gneiss from the Eastern Alps ». *American Mineralogist* 83, nº 3-4 (1 avril 1998): 248-58.
- Griffin, WL. "GLITTER: data reduction software for laser ablation ICP-MS". Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues, 308-311, 2008.
- Hoskin, Paul W. O., Peter D. Kinny, Doone Wyborn, et Bruce W. Chappell. « Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: An Integrated Approach ». *Journal of Petrology* 41, nº 9 (1 septembre 2000): 1365-96.
- Jackson, Simon E., Norman J. Pearson, William L. Griffin, et Elena A. Belousova. « The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U– Pb Zircon Geochronology ». *Chemical Geology* 211, nº 1-2 (novembre 2004): 47-69.
- Janots, E., M. Engi, A. Berger, J. Allaz, J.-O. Schwarz, et C. Spandler. « Prograde Metamorphic Sequence of REE Minerals in Pelitic Rocks of the Central Alps: Implications for Allanite–Monazite–Xenotime Phase Relations from 250 to 610 °C ». *Journal of Metamorphic Geology* 26, n° 5 (juin 2008): 509-26.
- Jochum, Klaus Peter, et Brigitte Stoll. « CHAPTER 10: REFERENCE MATERIALS FOR ELEMENTAL AND ISOTOPIC ANALYSES BY LA–(MC)–ICP–MS: SUCCESSES AND OUTSTANDING NEEDS », s. d., 22.
- Jochum, Klaus Peter, Ulrike Weis, Beate Schwager, Brigitte Stoll, Stephen A. Wilson, Gerald
 H. Haug, Meinrat O. Andreae, et Jacinta Enzweiler. « Reference Values Following ISO
 Guidelines for Frequently Requested Rock Reference Materials ». *Geostandards and Geoanalytical Research* 40, nº 3 (septembre 2016): 333-50.
- Laurent, O., H. Martin, J.F. Moyen, et R. Doucelance. « The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5Ga ». *Lithos* 205 (septembre 2014): 208-35.
- Laurent, Oscar. « Les changements géodynamiques à la transition Archéen-Protérozoïque: étude des granitoïdes de la marge Nord du craton du Kaapvaal (Afrique du Sud) », s. d., 532. Thèse (2012).
- Laurent, Oscar, Jean-Louis Paquette, Hervé Martin, Régis Doucelance, et Jean-François Moyen. « LA-ICP-MS Dating of Zircons from Meso- and Neoarchean Granitoids of the

Pietersburg Block (South Africa): Crustal Evolution at the Northern Margin of the Kaapvaal Craton ». *Precambrian Research* 230 (juin 2013): 209-26.

- Laurent, Oscar, et Armin Zeh. « A Linear Hf Isotope-Age Array despite Different Granitoid Sources and Complex Archean Geodynamics: Example from the Pietersburg Block (South Africa) ». *Earth and Planetary Science Letters* 430 (novembre 2015): 326-38.
- Laurent, Oscar, Armin Zeh, Günther Brandl, Adrien Vezinet, et Allan Wilson. « Of an Archaean Accretionary Orogen Along the Northern Edge of the Kaapvaal Craton », s. d., 25. (2019)
- Marks, Michael A.W., Thomas Wenzel, Martin J. Whitehouse, Matthias Loose, Thomas Zack, Matthias Barth, Linda Worgard, et al. « The Volatile Inventory (F, Cl, Br, S, C) of Magmatic Apatite: An Integrated Analytical Approach ». *Chemical Geology* 291 (janvier 2012): 241-55.
- Martin, Hervé. « The Mechanisms of Petrogenesis of the Archaean Continental Crust— Comparison with Modern Processes ». *Lithos* 30, nº 3-4 (septembre 1993): 373-88.
- Montel, Jean-Marc. « Experimental Determination of the Solubility of Ce-Monazite in SiO2-Al2O3-K2O-Na2O Melts at 800 °C, 2 Kbar, under H2O-Saturated Conditions ». *Geology* 14, n° 8 (1986): 659.
- Montel, Kornprobst, et Vielzeuf. « Preservation of Old U-Th-Pb Ages in Shielded Monazite: Example from the Beni Bousera Hercynian Kinzigites (Morocco): U-Th-Pb MONAZITE DATING AT BENI BOUSERA ». *Journal of Metamorphic Geology* 18, nº 3 (25 décembre 2001): 335-342.
- Moyen, J.-F., H. Martin, M. Jayananda, et B. Auvray. « Late Archaean Granites: A Typology Based on the Dharwar Craton (India) ». *Precambrian Research* 127, nº 1-3 (novembre 2003): 103-23.
- Moyen, Jean-François. « The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non-Unique Tectonic Setting for Archaean Crustal Growth ». *Lithos* 123, nº 1-4 (avril 2011): 21-36.
- Moyen, Jean-François, et Hervé Martin. « Forty Years of TTG Research ». *Lithos* 148 (septembre 2012): 312-36.
- Nicoli, G., G. Stevens, J.-F. Moyen, et D. Frei. « Rapid Evolution from Sediment to Anatectic Granulite in an Archean Continental Collision Zone: The Example of the Bandelierkop Formation Metapelites, South Marginal Zone, Limpopo Belt, South Africa ». *Journal of Metamorphic Geology* 33, nº 2 (février 2015): 177-202.

- Pan, Y., et M. E. Fleet. « Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors ». *Reviews in Mineralogy and Geochemistry* 48, nº 1 (1 janvier 2002): 13-49.
- Reimer, Ludwig. « Emission of Backscattered and Secondary Electrons ». In *Scanning Electron Microscopy*, par Ludwig Reimer, 135-69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
- Robb, L J, G Brandl, C R Anhaeusser, et M Poujol. « 3 ARCHAEAN GRANITOID INTRUSIONS », s. d., 38.
- Seydoux-Guillaume, Anne-Magali, Jean-Louis Paquette, Michael Wiedenbeck, Jean-Marc Montel, et Wilhelm Heinrich. « Experimental Resetting of the U–Th–Pb Systems in Monazite ». *Chemical Geology* 191, nº 1-3 (novembre 2002): 165-81.
- Sha, Lian-Kun, et Bruce W Chappell. « Apatite Chemical Composition, Determined by Electron Microprobe and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis ». *Geochimica et Cosmochimica Acta* 63, nº 22 (novembre 1999): 3861-81.
- Smithies, R.H., D.C. Champion, et M.J. Van Kranendonk. « Formation of Paleoarchean Continental Crust through Infracrustal Melting of Enriched Basalt ». *Earth and Planetary Science Letters* 281, nº 3-4 (15 mai 2009): 298-306.
- Tomascak, Paul B., Eirik J. Krogstad, et Richard J. Walker. « U-Pb Monazite Geochronology of Granitic Rocks from Maine: Implications for Late Paleozoic Tectonics in the Northern Appalachians ». *The Journal of Geology* 104, nº 2 (1996): 185-95.
- Vezinet, Adrien, Jean-François Moyen, Gary Stevens, Gautier Nicoli, Oscar Laurent, Simon Couzinié, et Dirk Frei. « A Record of 0.5 Ga of Evolution of the Continental Crust along the Northern Edge of the Kaapvaal Craton, South Africa: Consequences for the Understanding of Archean Geodynamic Processes ». *Precambrian Research* 305 (février 2018): 310-26.
- Wiedenbeck.M, Allé.P, Corfu.F, Griggin.W.L, Meier.M, Oberli.F, Von Quadt.A, Roddick.J.C, Spiegel.W, « Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses ». Geostandards Newsletter, Vol. 19, N° 1 (Avril 1995), p. 1 à 23.
- Wilde, Simon A., John W. Valley, William H. Peck, et Colin M. Graham. « Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr Ago ». *Nature* 409, nº 6817 (janvier 2001): 175-78.
- Yacobi, B. G., et D. B. Holt. « Cathodoluminescence Scanning Electron Microscopy of Semiconductors ». *Journal of Applied Physics* 59, nº 4 (15 février 1986): R1-24.

- Yui, Tzen-Fu, Pouyan Shen, et Han-Hsing Liu. « Titanite Inclusions in Altered Biotite from Granitoids of Taiwan: Microstructures and Origins ». *Journal of Asian Earth Sciences* 19, nº 1-2 (février 2001): 165-75.
- Zeh, Armin, et Axel Gerdes. « U–Pb and Hf Isotope Record of Detrital Zircons from Gold-Bearing Sediments of the Pietersburg Greenstone Belt (South Africa)—Is There a Common Provenance with the Witwatersrand Basin? » *Precambrian Research* 204-205 (mai 2012): 46-56.
- Zeh, Armin, Axel Gerdes, et Jackson M. Barton. « Archean Accretion and Crustal Evolution of the Kalahari Craton—the Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc ». *Journal of Petrology* 50, nº 5 (mai 2009): 933-66.
- Zeh, Armin, Justine Jaguin, Marc Poujol, Philippe Boulvais, Sylvain Block, et Jean-Louis Paquette. « Juvenile Crust Formation in the Northeastern Kaapvaal Craton at 2.97Ga— Implications for Archean Terrane Accretion, and the Source of the Pietersburg Gold ». *Precambrian Research* 233 (août 2013): 20-43.

ANNEXES

Date	Point	CaO	P2O5	F	Na2O	SiO2	CI	Ce2O3	SO3	La2O3	SrO	Y2O3	ThO2	Total
	1/1.	54,34	41,09	3,88	0,25	0,23	0,44	0,51	0,27	0,32	0,06	0,03	-	101,41
07-mars	2/1.	53,88	41,22	3,86	0,25	0,21 ·	0,43	0,47	0,27	0,36	0,04	0,03	-	101,02
	3/1.	53,72	40,48	3,90	0,25	0,21	0,42	0,51	0,28	0,36	0,05	0,05	-	100,23
	3/1.	54,32	40,49	3,58	0,22	0,21	0,40	0,43	0,27	0,38	0,07	0,04	-	100,41
	3/2.	53,73	40,29	3,52	0,19	0,22	0,42	0,50	0,23	0,36	0,04	0,02	-	99,52
	3/3.	53,92	40,49	3,56	0,21	0,22	0,43	0,51	0,26	0,36	0,05	0,04	-	100,04
	4/1.	54,12	40,60	3,53	0,24	0,21	0,40	0,50	0,29	0,33	0,04	0,02	-	100,28
	4/2.	53,70	40,58	3,43	0,24	0,21	0,41	0,53	0,20	0,35	0,08	0,04	-	99,76
	4/3.	54,10	40,78	3,49	0,18	0,23	0,41	0,50	0,26	0,38	0,05	0,03	-	100,43
	34/1.	54,31	40,93	3,58	0,22	0,23	0,44	0,43	0,22	0,34	0,06	0,05	-	100,81
	35/1.	54,21	40,69	3,56	0,19	0,22	0,43	0,47	0,29	0,38	0,08	0,05	-	100,58
	36/1.	54,85	40,76	3,57	0,22	0,20	0,42	0,52	0,29	0,34	0,08	0,02	-	101,26
	56/1.	54,22	41,19	3,63	0,23	0,20	0,41	0,53	0,26	0,35	0,05	0,05	-	101,13
	57/1.	54,72	41,54	3,44	0,18	0,24	0,42	0,49	0,24	0,35	0,06	0,03	-	101,72
	58/1.	55,17	41,43	3,55	0,20	0,22	0,41	0,49	0,27	0,37	0,06	0,05	-	102,21
	81/1.	55,65	41,44	3,51	0,20	0,17	0,43	0,50	0,25	0,34	0,08	0,04	-	102,60
	82/1.	54,47	41,21	3,38	0,23	0,21	0,43	0,51	0,33	0,37	0,05	0,04	-	101,22
08-mars	83/1.	54,98	41,42	3,35	0,27	0,22	0,43	0,48	0,22	0,34	0,06	0,06	-	101,82
	107 / 1 .	54,31	40,81	3,53	0,23	0,22	0,43	0,47	0,24	0,37	0,05	0,03	-	100,69
	108 / 1 .	55,17	41,23	3,59	0,20	0,22	0,41	0,49	0,19	0,33	0,04	0,03	-	101,90
	109/1.	54,81	41,36	3,59	0,21	0,22	0,42	0,53	0,26	0,35	0,03	0,01	-	101,78
	132 / 1 .	54,76	41,26	3,56	0,24	0,22	0,41	0,46	0,20	0,41	0,07	0,04	-	101,62
	133 / 1 .	54,27	40,98	3,41	0,17	0,25	0,43	0,46	0,28	0,34	0,07	0,04	-	100,72
	134 / 1 .	54,23	40,90	3,40	0,28	0,21	0,41	0,45	0,26	0,37	0,03	0,08	-	100,61
	153 / 1 .	54,02	41,02	3,58	0,25	0,20	0,42	0,48	0,29	0,37	0,04	0,06	-	100,73
	154 / 1 .	54,32	40,82	3,64	0,23	0,22	0,41	0,50	0,22	0,34	0,05	0,03	-	100,76
	155 / 1 .	54,09	40,89	3,52	0,22	0,22	0,42	0,48	0,25	0,34	0,07	0,04	-	100,54
	180/1.	55,10	41,55	3,51	0,23	0,22	0,40	0,53	0,24	0,37	0,06	0,03	-	102,23
	181/1.	55,06	41,48	3,61	0,22	0,21	0,41	0,52	0,26	0,37	0,06	0,06	-	102,25
	182 / 1 .	54,94	41,39	3,41	0,20	0,21	0,42	0,52	0,29	0,35	0,08	0,06	-	101,86
	183 / 1 .	55,25	41,26	3,48	0,16	0,22	0,43	0,53	0,26	0,40	0,07	0,05	-	102,12
	184 / 1 .	54,33	40,94	3,44	0,23	0,24	0,41	0,44	0,25	0,38	0,04	0,05	-	100,76
	2/1.	54,14	41,04	3,68	0,24	0,22	0,43	0,53	0,29	0,34	0,06	0,05	0,00	101,01
	2/2.	54,37	40,95	3,66	0,21	0,23	0,41	0,43	0,23	0,35	0,06	0,05	0,09	101,05
	2/3.	54,06	40,76	3,46	0,21	0,23	0,42	0,53	0,26	0,35	0,05	0,06	0,08	100,45
	2/4.	53,88	41,03	3,70	0,24	0,20	0,41	0,53	0,23	0,36	0,07	0,03	0,00	100,68
	2/5.	53,66	40,93	3,49	0,20	0,20	0,42	0,49	0,22	0,37	0,07	0,03	0,00	100,07
27-mars	8/1.	54,28	41,23	4,30	0,21	0,27	0,31	0,51	0,18	0,31	0,06	0,04	0,20	101,90
	15/1.	54,17	40,99	4,16	0,22	0,21	0,33	0,51	0,19	0,37	0,03	0,04	0,28	101,49
	20/1.	53,53	41,04	4,48	0,18	0,23	0,36	0,52	0,25	0,35	0,05	0,04	0,00	101,03
	21/1.	53,21	41,34	4,02	0,20	0,21	0,37	0,46	0,18	0,32	0,08	0,04	0,08	100,51
	22/1.	53,14	41,07	3,79	0,23	0,21	0,40	0,54	0,24	0,32	0,02	0,03	0,00	99,99
	23/1.	53,48	41,02	3,86	0,22	0,21	0,43	0,51	0,26	0,34	0,05	0,02	0,00	100,41

Annexe 2 : Données standard Durango sur la microsonde électroniques CAMECA SX100 pendant les sessions d'analyses sur les apatites.

Élément	Р	Са	Si	La	Ce	Sm	Nd	Gd	Pr	Y	Pb	U	Th
Cristal analyseur	LPET	PET	PET	PET	PET	LIF	LIF	LIF	LIF	LPET	LPET	PET	PET
Temps d'analyse (s)	10	30	40	30	20	30	20	30	20	45	45	60	20

Annexe 3.1 : Conditions d'analyses pour les mesures sur les monazites avec la microsonde électronique.

Élément	Р	Ca	Si	F	Cl	Na	0	La	Ce	Sr	S	Y
Cristal analyseur	LPET	PET	TAP	PC0	LPET	TAP	PC0	LPET	PET	LPET	PET	TAP
Temps d'analyse (s)	10	10	20	20	10	10	70	10	50	60	30	60

Annexe 3.2 : Conditions d'analyses pour les mesures sur les apatites avec la microsonde électronique.

Élément	Са	Al	Fe	Si	Mg	Mn	Ti	La	Ce	Sm	Nd	Gd	Pr	Y	Th
Cristal analyseur	PET	TAP	LIF	TAP	TAP	LIF	PET	PET	PET	LLIF	LLIF	LLIF	LLIF	PET	PET
Temps d'analyse (s)	5	10	30	10	30	50	10	20	20	30	30	30	20	10	30

Annexe 3.1 : Conditions d'analyses pour les mesures sur les allanites avec la microsonde électronique.

Element							Valeurs des	Durangos en p	opm ; session :	12 mars 2019							Moyenne
Ca43	389297,53	389297,5	389297,53	389297,59	389297,59	389297,53	389297,53	389297,59	389297,59	389297,53	389297,53	389297,56	389297,53	389297,63	389297,59	389297,59	389297,56
Ca44	430586,5	423203,34	420899,13	422061,94	413225,5	437692,34	430445	419692,09	425747,81	427977,78	423213,44	424743,69	413519,75	417708,97	424380,41	422045,38	423571,44
V51	29,34	29,13	27,41	29,22	29,51	30,69	30,89	28,75	30,26	30,26	30,39	30,05	29,91	29,39	30,22	30,04	29,72
Ni60	b.d.l	2,26	b.d.l	1,22	1,11	1,61	2,07	b.d.l	2,43	1,31	b.d.l	1,63	b.d.l	b.d.l	2,13	2,42	1,82
Ga71	139,23	139,23	134,72	141,76	143,36	144,06	147,12	139,59	144,52	142,13	142,53	143,01	140,2	140,73	143,98	140,36	141,66
Sr88	488,92	504,15	488,01	488,32	495,55	509,71	508,99	492,02	503,86	503,19	499,97	500,27	498,9	496,29	512,46	507,55	499,89
Y89	453,19	465,95	445,31	460,43	459,02	472,92	476,96	458,91	476,68	473,18	482,1	488,82	483,6	487,44	501,92	496,15	473,91
Zr90	0,68	1,11	0,74	0,791	0,897	0,821	0,82	0,606	0,657	0,791	0,87	1,18	0,69	0,8	0,78	0,99	0,83
Ba137	1,94	1,54	1,52	1,36	1,58	1,26	1,36	1,79	1,6	1,66	1,5	1,41	1,18	1,83	1,86	1,57	1,56
La139	3299,52	3268,47	3242,5	3276,86	3320,27	3346,03	3417,63	3287,76	3434,37	3405,77	3424,73	3426,07	3414,66	3373,85	3517,85	3495,05	3371,96
Ce140	3968,28	3954,93	3973,22	4031,45	4019,54	4094,89	4231,46	4002,14	4215,95	4144,2	4153,26	4168,23	4188,17	4142,49	4197,92	4111,65	4099,86
Pr141	327,04	328,48	326,68	338,75	338,8	338,61	340,43	333,98	345,88	339,61	342,72	344,31	339,84	347,21	353,53	346,64	339,53
Nd146	1058,8	1059,08	1063,68	1070,19	1079,85	1099,55	1097,98	1079,47	1106,44	1071,46	1089,54	1087,87	1091,44	1099,72	1126,28	1109,32	1086,92
Sm147	132,99	133,87	136,79	133,48	136,51	139,02	135,55	135,71	141,13	140,52	141,63	138,83	140,09	137,63	140,12	142,48	137,90
Eu153	17,42	16,87	16,63	17,01	17,17	17,57	17,38	16,85	17,28	17,67	17,25	17,49	17,53	16,93	17,85	17,79	17,29
Gd157	116,96	118,92	114,96	115,69	117,83	119,89	119,24	116,49	121,72	115,94	118,55	117,82	118,94	120,53	123,41	124,1	118,81
10159	15,54	13,36	15,54	13,36	15,67	15,05	15,51	15,28	14,05	15,65	15,91	14,17	15,99	15,94	14,01	15,92	15,72
Dy165	14,56	14 52	14 12	14 11	14.46	15 10	15 21	14,4	15.25	15,05	15.00	15 52	15 45	15.24	15 47	15 22	14.06
Fr166	39.56	39.68	38.09	39.01	14,40	10,19	13,31	40.31	15,25	40.1	13,09	13,33	13,45	13,34	13,47	13,52	14,90
Tm169	4.62	1 78	1 59	4 65	5.01	40,57	41,85	40,51	41,04	40,1	5.24	5 1/1	498	5 11	5 38	5 1	41,45
Yh172	28.43	28.22	29.03	29.06	29.11	29.28	28 34	29.21	28.81	29.15	29.31	30.95	30.2	30.38	31.26	30.62	29.46
10172	3,99	3.69	3.73	3.91	4.06	3.82	4.18	3.9	3,99	3.84	3.95	4.15	4.02	4.06	4,11	4.09	3.97
Hf178	0.039	b.d.l	b.d.l	b.d.l	0.0032	0.0222	b.d.l	b.d.l	b.d.l	b.d.l	0.0033	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	0.02
Pb208	b.d.l	0.41	b.d.l	0.581	0.571	0.484	0.425	0.541	0.38	0.729	0.405	0.654	0.554	0.412	0.452	0.601	0.51
Th232	160,54	165.41	159,47	163,44	166.82	164.16	164.41	159.89	165,71	164,47	168.11	168,94	168.66	168,71	173,91	173,46	166.01
U238	7,83	7,62	7,33	8,1	8,13	8,14	8,21	7,84	7,94	7,94	8,26	8,08	8,07	7,81	8,29	7,98	7,97
Element						Val	eurs des Durar	ngos à 1 sigma	a en ppm ; ses	sion 12 mars 2	019						STD
Ca43	12341.85	12335.56	12335.35	12321.38	12321.55	12321.51	12321.02	12321.48	12322.26	12321.76	12321.20	12321.20	12321.25	12321.46	12321.31	12321.22	12324.46
Ca44	14893,49	14919,25	15225,28	13941,50	14155,48	14245,31	14243,77	13238,89	13436,46	13513,37	16459,21	17491,75	18181,05	16349,84	17978,24	19491,07	15485,25
V51	1,23	1,26	1,24	1,08	1,15	1,10	1,13	1,07	1,16	1,20	1,39	1,48	1,60	1,07	1,14	1,18	1,22
Ni60	0,76	0,71	0,70	0,39	0,37	0,43	0,41	0,40	0,42	0,39	0,41	0,42	0,41	0,41	0,43	0,45	0,47
Zn66	3,46	3,21	3,10	1,50	1,35	1,45	1,35	1,25	1,24	1,15	1,18	1,20	1,17	1,12	1,16	1,18	1,63
Ga71	5,69	5,92	6,04	4,61	4,68	5,29	5,75	4,82	5,09	5,13	6,38	6,92	7,39	6,99	8,09	8,93	6,11
Sr88	19,12	20,56	21,01	16,53	17,64	17,49	18,26	15,83	16,32	16,42	16,95	17,34	17,76	22,33	25,81	28,71	19,26
Y89	16,97	18,05	18,03	19,61	22,82	15,18	15,37	15,04	15,80	15,89	16,28	16,84	17,07	17,67	19,18	20,14	17,50
Ba137	0,19	0,17	0,16	0,12	0,12	0,12	0,11	0,12	0,12	0,11	0,10	0,11	0,11	0,13	0,14	0,12	0,13
La139	130,75	135,33	141,96	119,10	132,56	122,81	135,38	111,47	119,24	121,73	111,20	112,16	112,94	120,91	132,81	140,18	125,03
Ce140	134,61	136,33	140,02	142,92	154,58	140,51	151,94	135,71	146,49	148,34	144,84	150,09	156,74	160,43	175,48	186,97	150,38
Pr141	11,06	11,29	11,49	11,25	11,76	14,75	16,89	11,52	12,31	12,55	11,54	11,86	12,03	13,26	14,55	15,50	12,73
Nd146	56,51	61,07	67,23	42,36	48,79	40,92	44,26	41,10	44,45	45,79	38,97	40,39	42,36	39,01	41,85	43,52	46,16
Sm147	5,79	6,11	0,05	4,88	5,45	4,74	4,77	4,41	4,61	4,60	5,38	5,54	5,92	6,29	7,18	8,22	5,66
Cd157	5.04	5 25	5.50	4.63	5 30	0,02	4 1 9	4.27	4.60	0,62	4.69	4.99	5 20	5.22	5.95	1,01	4.99
Th150	0.55	0.58	0.60	4,03	0.65	4,13	4,10	4,27	4,00	4,34	4,08	4,00	0.52	0.64	0.72	0,30	4,55
Dv163	2,91	2,93	2,97	3.07	3.63	2,80	2,96	2,75	2,97	2,99	3,12	3,31	3,50	3.41	3.75	4,29	3,21
Ho165	0.58	0.59	0.60	0.60	0.70	0.59	0.63	0.62	0.68	0.72	0.63	0.68	0.73	0.61	0.66	0.69	0.64
Er166	1,55	1,58	1,57	1,55	1,80	1,54	1,64	1,42	1,48	1,42	1,64	1,71	1,74	1,58	1,66	1,67	1,60
Tm169	0,20	0,20	0,20	0,19	0,22	0,19	0,19	0,17	0,18	0,18	0,21	0,21	0,22	0,25	0,29	0,30	0,21
Yb172	1,19	1,18	1,24	1,28	1,46	1,13	1,13	1,07	1,06	1,07	1,14	1,22	1,21	1,35	1,49	1,57	1,24
Lu175	0,18	0,17	0,18	0,17	0,20	0,16	0,17	0,16	0,16	0,16	0,16	0,17	0,16	0,17	0,18	0,19	0,17
Hf178	0,01	0,00	0,02	0,00	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01
Pb208	0,15	0,13	0,13	0,07	0,07	0,08	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,08	0,08
Th232	5,29	5,47	5,30	6,64	7,75	5,95	6,33	5,91	6,37	6,63	5,71	5,81	5,90	6,10	6,55	6,85	6,16
U238	0,29	0,28	0,28	0,34	0,38	0,31	0,34	0,36	0,39	0,43	0,32	0,32	0,34	0,33	0,38	0,40	0,34

Annexe 4.1 : Données standard secondaire Durango sur ICP-MS Element XR, taille du faisceau 15 µm ; 1^{ère} partie.

Element				Valeurs stan	dard interne I	Durango en pr	m : session 2	5 mars 2019				Moyenne
							,					Durango
Ca43	389369,16	387367,97	389369,03	389369,00	389369,09	389369,09	389369,00	389369,00	389369,06	389369,00	389369,00	389187,13
Ca44	443517,44	409067,06	427013,94	418649,09	421431,53	440302,53	446932,34	446411,91	438550,84	438194,09	449142,72	434473,95
V51	28,19	26,31	28,78	29,32	25,69	29,42	28,23	29,10	30,21	28,31	28,85	28,40
Ga71	111,42	103,99	113,90	112,00	101,81	109,38	101,84	111,16	115,35	114,11	117,63	110,24
Sr88	516,57	476,33	507,59	497,27	479,73	495,00	492,72	515,32	546,64	521,82	532,86	507,44
Y89	460,20	443,73	462,47	478,31	425,82	466,58	449,78	459,22	502,26	476,17	479,63	464,02
Ba137	1,64	1,81	1,24	1,50	1,60	1,19	1,61	1,60	1,27	1,24	1,11	1,44
La139	3396,83	3264,54	3346,65	3404,99	3175,74	3415,65	3298,71	3509,27	3696,73	3474,64	3436,19	3401,81
Ce140	4174,96	3972,96	4136,26	4137,12	4029,18	4229,19	4112,24	4359,12	4383,95	4475,40	4395,20	4218,69
Pr141	353,36	335,18	347,70	349,84	320,48	348,20	354,10	359,73	365,18	350,92	362,10	349,71
Nd146	1120,38	1070,48	1094,12	1098,24	1024,36	1092,43	1101,60	1091,25	1178,91	1145,95	1117,86	1103,23
Sm147	144,08	138,69	139,46	143,44	133,30	139,76	141,55	146,72	149,18	147,36	140,78	142,21
Eu153	17,84	16,44	17,65	17,99	17,23	18,49	17,72	18,13	18,86	18,24	18,42	17,91
Gd157	120,88	113,49	114,30	117,43	115,96	115,97	119,45	115,82	121,80	125,09	122,70	118,44
Tb159	13,24	13,24	13,52	13,86	12,92	13,28	13,68	13,91	14,17	13,83	14,03	13,61
Dy163	78,20	71,31	74,96	75,76	73,61	76,19	73,90	78,67	78,07	83,33	78,40	76,58
Ho165	15,10	14,06	15,06	15,20	14,49	15,52	14,63	15,80	15,21	14,87	15,42	15,03
Er166	40,81	39,22	39,11	39,41	38,56	39,51	39,65	41,14	41,21	40,22	42,05	40,08
Tm169	5,18	4,55	4,86	4,90	4,71	5,22	4,76	4,90	5,25	5,00	5,24	4,96
Yb172	30,82	29,29	29,87	31,00	28,80	29,35	29,29	29,32	31,85	29,66	29,33	29,87
Lu175	4,01	3,72	4,07	4,23	3,65	4,04	4,03	3,86	4,05	3,93	3,96	3,96
Hf178	0,05	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	0,07	b.d.l	b.d.l	b.d.l	0,06
Pb208	0,35	0,33	0,59	0,43	0,41	0,71	0,49	0,43	0,48	0,46	0,49	0,47
Th232	168,46	165,05	165,89	164,65	155,88	167,73	170,99	171,57	175,14	167,40	171,61	167,67
U238	8,28	7,58	7,91	8,00	7,37	7,75	8,11	7,74	8,46	8,20	8,29	7,97
-												

Element			Vale	urs standard	interne Duran	go à 1 sigma	en nnm : sess	ion 25 mars 2	010			Moyenne
Liement			Vale	urs standard	Interne Duran	igo a i sigina	en ppin, sess	1011 2.5 111013 2	.015			Durango
Ca43	12349,29	12283,03	12348,63	12350,52	12344,24	12349,55	12344,19	12344,94	12348,34	12345,76	12344,93	12341,22
Ca44	26470,63	26020,24	15904,93	15594,30	14653,14	16629,04	29837,82	39240,71	19688,48	23807,01	14787,18	22057,59
V51	1,82	1,81	1,93	1,96	1,01	1,22	2,09	2,84	1,39	1,52	1,48	1,73
Ga71	5,56	5,47	6,08	5,98	4,24	5,38	7,06	10,19	4,61	5,22	6,81	6,05
Sr88	23,19	22,39	25,71	25,19	17,05	19,35	27,36	36,85	21,34	23,31	21,89	23,97
Y89	23,16	23,60	24,97	25,83	14,28	16,49	27,32	36,48	22,56	25,67	21,76	23,83
Ba137	0,20	0,18	0,19	0,23	0,16	0,20	0,17	0,20	0,23	0,23	0,21	0,20
La139	206,06	211,75	195,45	198,86	104,49	116,35	169,41	228,41	151,64	165,65	156,79	173,17
Ce140	205,80	207,24	224,81	224,86	138,64	156,52	258,47	360,63	217,21	273,51	191,47	223,56
Pr141	22,42	22,81	18,11	18,22	10,69	12,26	21,89	29,22	11,86	11,69	11,60	17,34
Nd146	74,26	76,16	60,03	60,26	32,64	35,19	67,65	87,66	58,91	70,97	46,13	60,90
Sm147	5,85	5,81	10,01	10,29	5,31	6,43	8,64	11,70	8,82	11,15	5,63	8,15
Eu153	0,98	0,96	1,04	1,06	0,59	0,65	0,88	1,11	0,83	0,93	0,79	0,89
Gd157	8,12	8,15	5,48	5,63	4,08	4,32	5,07	5,74	5,15	6,11	5,08	5,72
Tb159	0,67	0,70	0,80	0,82	0,47	0,51	0,96	1,30	0,72	0,86	0,76	0,78
Dy163	4,44	4,29	3,85	3,90	2,72	3,05	5,22	7,38	3,55	4,49	2,78	4,15
Ho165	0,96	0,95	0,82	0,83	0,51	0,57	0,96	1,36	0,68	0,77	0,86	0,84
Er166	2,41	2,46	2,28	2,30	1,39	1,50	2,66	3,61	1,75	1,95	1,61	2,17
Tm169	0,37	0,34	0,34	0,34	0,18	0,21	0,35	0,47	0,24	0,26	0,27	0,31
Yb172	2,14	2,16	1,76	1,83	1,12	1,23	2,16	2,83	1,46	1,56	1,38	1,78
Lu175	0,23	0,23	0,25	0,26	0,17	0,21	0,25	0,30	0,19	0,20	0,21	0,23
Hf178	0,02	0,03	0,02	0,02	0,03	0,02	0,02	0,02	0,04	0,03	0,04	0,02
Pb208	0,09	0,10	0,09	0,10	0,09	0,09	0,09	0,09	0,09	0,10	0,10	0,09
Th232	10,02	10,49	10,03	9,96	5,52	6,37	10,50	13,73	8,50	9,90	6,40	9,22
U238	0,60	0,59	0,37	0,37	0,25	0,27	0,50	0,62	0,35	0,39	0,32	0,42

Annexe 4.2 : Données standard secondaire Durango sur ICP-MS Element XR, taille du faisceau 15 μm ;

Element						Valeurs stan	dard interne [)urango en pp	om ; session 2	6 mars 2019						Durango 9um	Moyenne Durango 15 um
Ca43	389369,13	389369,09	389369,06	389369,09	389369,13	389369,06	389369,09	389369,09	389369,09	389369,03	389369,03	389369,06	389369,09	389369,09	389369,09	389368,94	389369,07
Ca44	437057,19	441893,19	414082,38	426541,97	427374,84	429551,09	422884,13	434701,56	427258,78	435332,91	436261,00	435732,16	449835,97	423496,59	445450,44	465132,16	434536,65
V51	29,00	28,96	28,01	29,58	27,65	28,69	28,07	28,22	28,07	29,47	30,30	30,17	31,59	29,88	30,94	24,84	28,97
Ga71	136,60	140,57	134,39	135,10	133,16	141,67	136,53	130,85	140,92	147,63	144,18	138,54	144,90	145,93	148,00	126,60	139,10
Sr88	486,87	503,45	473,44	489,23	487,53	504,46	491,01	487,54	487,23	517,79	506,96	524,14	512,38	508,65	518,01	529,77	501,78
Y89	444,34	451,19	429,01	446,81	445,76	463,01	451,94	445,76	419,69	458,95	473,31	476,87	465,15	459,71	466,60	492,57	455,67
Ba137	1,46	1,67	1,55	1,41	1,68	1,36	1,43	1,57	1,94	1,73	1,36	1,80	1,34	1,48	1,59	2,59	1,62
La139	3281,93	3372,44	3218,81	3394,12	3255,04	3347,98	3314,14	3268,38	3179,88	3347,58	3470,75	3460,49	3518,04	3456,43	3415,50	3499,16	3362,54
Ce140	4138,00	4174,52	3991,28	4048,49	4047,16	4185,50	4090,48	4055,22	4138,95	4225,36	4187,92	4245,76	4258,31	4200,70	4240,34	4291,40	4157,46
Pr141	343,71	346,35	329,48	338,98	335,33	343,95	338,99	346,86	329,58	342,67	347,00	344,50	358,59	343,20	350,32	356,08	343,47
Nd146	1075,76	1102,51	1061,05	1094,76	1064,73	1124,30	1086,75	1073,33	1043,84	1114,60	1102,88	1091,08	1096,55	1128,81	1097,31	1156,21	1094,65
Sm147	135,68	139,97	134,76	134,78	134,63	137,78	139,68	140,18	133,48	140,76	141,10	138,82	143,11	144,50	145,36	151,40	139,75
Eu153	17,66	18,11	17,01	17,65	17,24	17,19	17,10	16,98	17,02	18,32	17,65	18,10	18,69	18,05	18,41	18,46	1/,/3
Gd157	117,52	122,05	111,42	113,55	116,28	115,76	116,91	113,75	108,77	119,47	116,60	117,43	119,06	120,33	118,37	122,04	116,83
10159	13,10	13,21	12,85	13,14	13,38	13,45	13,12	13,35	12,87	13,09	13,41	13,57	14,00	13,00	13,75	13,80	13,40
Dy163	14.49	14,92	14.02	14,50	14.25	14,74	14,95	14 50	12,01	15 12	15 10	15 12	15 20	14.01	1472	15 27	14.60
H0105	14,40	14,55	27.66	20.27	20.24	20.52	20.01	14,39	15,70	13,15	20.91	13,12	13,29	20.97	14,75	13,57	14,09
Er 160	4 72	40,55	4 76	39,27	39,24 4 79	5 02	39,91	40,40	158	40,00	39,61 4 92	41,08	5 24	5 05	41,55	45,06	40,08
Vh172	28.46	28 44	27.62	28.73	28.13	29.45	28.75	29.16	27.65	29.47	29.61	29.40	30.10	29.08	29.97	31.77	29.11
10172	3.89	3.68	3 76	3.81	3.83	3 70	3.81	3 73	3.60	3 79	3.85	3 96	4 01	3 70	4 02	4.28	3.84
Lu175	b d l	b d l	bdl	b d l	5,65 h.d.l	b.d.l	0.04	b.d.l	5,00 h.d.l	b.d.l	b d l	0.08	h d l	b.d.l	4,02 h.d.l	4,20 hdl	0.06
Ph208	0.52	0.57	0.44	0.41	0.41	0.37	0.37	0.49	0.39	0.44	0.47	0.50	0.41	0.39	0.53	0.68	0.46
Th232	160.91	162.06	153.59	156.82	158.36	162.85	165.65	161.41	152.22	164.32	164.43	164.91	167.28	162.00	164.13	178.38	162.46
U238	7.77	8.03	7.56	7.53	7.82	7.96	8.02	7.89	7.50	7.88	8.10	7.75	8.07	7.93	8.00	7.75	7.85
	,	,	,	,		,		,	,	,	,	,	,	,	,		<u> </u>
																-	
Element					Vale	eurs standard	interne Durar	ngo à 1 sigma	en ppm ; sess	ion 26 mars 2	2019					Durango	Moyenne STD
Element	12220.22	12220 51	12227.66	12228.04	Vale	eurs standard	interne Durar	ngo à 1 sigma	en ppm ; sess	ion 26 mars 2	12220.45	12221.65	12222.01	12222.16	12222.08	Durango 9µm	Moyenne STD 15 µm
Element Ca43	12329,32	12329,51	12327,66	12328,04	Vale 12328,36	eurs standard 12328,95	interne Durar 12328,51	ngo à 1 sigma 12328,79	en ppm ; sess 12330,17	ion 26 mars 2	2019	12331,65	12332,01	12332,16	12332,98	Durango 9μm 12386,32	Moyenne STD 15 μm 12329,97
Element Ca43 Ca44	12329,32 14469,42 1.08	12329,51 14763,49	12327,66 14039,11	12328,04 15410,62	Vale 12328,36 14966,04 1.04	eurs standard 12328,95 16242,86 1 16	interne Durar 12328,51 13439,42 1 13	ngo à 1 sigma 12328,79 13930,09 1 24	en ppm ; sess 12330,17 14663,43 1.05	ion 26 mars 2 12331,04 15936,35	2019 12330,45 18841,39 1 15	12331,65 21838,78 1 21	12332,01 19483,39 1 23	12332,16 20751,99	12332,98 23531,87 1 32	Durango 9μm 12386,32 22243,45 1 15	Moyenne STD 15 μm 12329,97 16820,55 1 15
Element Ca43 Ca44 V51 Ga71	12329,32 14469,42 1,08 5 18	12329,51 14763,49 1,10 5 48	12327,66 14039,11 0,99 4 52	12328,04 15410,62 1,08 4 77	Vale 12328,36 14966,04 1,04 5.04	eurs standard 12328,95 16242,86 1,16 6.02	interne Durar 12328,51 13439,42 1,13 4 91	ngo à 1 sigma 12328,79 13930,09 1,24 5.07	en ppm ; sess 12330,17 14663,43 1,05 4 55	ion 26 mars 2 12331,04 15936,35 1,18 4 80	2019 12330,45 18841,39 1,15 6 19	12331,65 21838,78 1,21 6 88	12332,01 19483,39 1,23 6 38	12332,16 20751,99 1,23 7 28	12332,98 23531,87 1,32 7 96	Durango 9μm 12386,32 22243,45 1,15 6 59	Moyenne STD 15 μm 12329,97 16820,55 1,15 5 67
Element Ca43 Ca44 V51 Ga71 Sr88	12329,32 14469,42 1,08 5,18 18 15	12329,51 14763,49 1,10 5,48 19 29	12327,66 14039,11 0,99 4,52 15 32	12328,04 15410,62 1,08 4,77 16,28	Vale 12328,36 14966,04 1,04 5,04 20.62	eurs standard 12328,95 16242,86 1,16 6,02 25 26	interne Durar 12328,51 13439,42 1,13 4,91 19.06	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21 22	en ppm ; sess 12330,17 14663,43 1,05 4,55 15 49	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16 62	2019 12330,45 18841,39 1,15 6,19 24 16	12331,65 21838,78 1,21 6,88 29 92	12332,01 19483,39 1,23 6,38 19 25	12332,16 20751,99 1,23 7,28 20 70	12332,98 23531,87 1,32 7,96 22 21	Durango 9μm 12386,32 22243,45 1,15 6,59 27 78	Moyenne STD 15 μm 12329,97 16820,55 1,15 5,67 20 24
Element Ca43 Ca44 V51 Ga71 Sr88 Y89	12329,32 14469,42 1,08 5,18 18,16 16,40	12329,51 14763,49 1,10 5,48 19,29 17.08	12327,66 14039,11 0,99 4,52 15,32 13,69	12328,04 15410,62 1,08 4,77 16,28 14,38	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32	2019 12330,45 18841,39 1,15 6,19 24,16 18,94	12331,65 21838,78 1,21 6,88 29,92 21,53	12332,01 19483,39 1,23 6,38 19,25 20,30	12332,16 20751,99 1,23 7,28 20,70 22,74	12332,98 23531,87 1,32 7,96 22,21 24,92	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Cc140	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89	Moyenne STD 15 μm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35	Moyenne STD 15 μm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72
Element Ca43 Ca44 V51 Ga71 Sr88 88 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49 2,64	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47 2,60	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52 3,26	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85 4,02	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55 0,50	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49 2,64 0,51	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41 0,51	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47 2,60 0,57	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90 0,60	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21 0,71	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03 0,61	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34 0,69	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49 0,49	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73 0,55	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52 3,26 0,63	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62 0,70	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07 0,63	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64 0,67	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03 0,70	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85 4,02 0,93	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23 0,60
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165 Er166	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55 0,50 1,50	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49 2,64 0,51 1,62	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41 0,51 1,26	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47 2,60 0,57 1,32	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90 0,60 1,61	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21 0,71 1,84	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03 0,61 1,66	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34 0,69 1,90	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49 0,49 1,41	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73 0,55 1,62	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52 3,26 0,63 1,66	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62 0,70 1,92	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07 0,63 1,81	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64 0,67 1,91	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03 0,70 2,12	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85 4,02 0,93 2,48	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23 0,60 1,68
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165 Er166 Tm169	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55 0,50 1,50 0,17	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49 2,64 0,51 1,62 0,18	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41 0,51 1,26 0,18	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47 2,60 0,57 1,32 0,20	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90 0,60 1,61 0,18	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21 0,71 1,84 0,20	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03 0,61 1,66 0,20	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34 0,69 1,90 0,22	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49 0,49 1,41 0,17	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73 0,55 1,62 0,19	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52 3,26 0,63 1,66 0,22	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62 0,70 1,92 0,25	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07 0,63 1,81 0,25	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64 0,67 1,91 0,27	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03 0,70 2,12 0,28	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85 4,02 0,93 2,48 0,34	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23 0,60 1,68 0,21
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Cc140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165 Er166 Tm169 Yb172	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55 0,50 1,50 0,17 1,02	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49 2,64 0,51 1,62 0,18 1,03	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41 0,51 1,26 0,18 1,06	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47 2,60 0,57 1,32 0,20 1,19	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90 0,60 1,61 0,18 1,11	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21 0,71 1,84 0,20 1,27	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03 0,61 1,66 0,20 1,43	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34 0,69 1,90 0,22 1,70	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49 0,49 1,41 0,17 1,06	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73 0,55 1,62 0,19 1,19	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52 3,26 0,63 1,66 0,22 1,27	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62 0,70 1,92 0,25 1,40	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07 0,63 1,81 0,25 1,33	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64 0,67 1,91 0,27 1,41	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03 0,70 2,12 0,28 1,53	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85 4,02 0,93 2,48 0,34 2,04	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23 0,60 1,68 0,21 1,27
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Cc140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165 Er166 Tm169 Yb172 Lu175	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55 0,50 1,50 0,17 1,02 0,15	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49 2,64 0,51 1,62 0,18 1,03 0,14	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41 0,51 1,26 0,18 1,06 0,14	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47 2,60 0,57 1,32 0,20 1,19 0,15	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90 0,60 1,61 0,18 1,11 0,15	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21 0,71 1,84 0,20 1,27 0,14	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03 0,61 1,66 0,20 1,43 0,21	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34 0,69 1,90 0,22 1,70 0,24	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49 0,49 1,41 0,17 1,06 0,14	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73 0,55 1,62 0,19 1,19 0,15	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52 3,26 0,63 1,66 0,22 1,27 0,16	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62 0,70 1,92 0,25 1,40 0,18	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07 0,63 1,81 0,25 1,33 0,18	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64 0,67 1,91 0,27 1,41 0,18	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03 0,70 2,12 0,28 1,53 0,20	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 27,77 18,48 72,77 8,89 1,35 7,34 0,85 4,02 0,34 2,04 0,29	Moyenne STD 15 μm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23 0,60 1,68 0,21 1,27 0,17
Element Ca43 Ca44 V51 Ga71 Sr88 88 37 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165 Er166 Tm169 Yb172 Lu175 Hf178	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55 0,50 1,50 0,17 1,02 0,15 0,01	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49 2,64 0,51 1,62 0,18 1,03 0,14 0,02	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41 0,51 1,26 0,18 1,06 0,14 0,02	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 15,704 12,47 37,43 4,58 0,64 3,86 0,47 2,60 0,57 1,32 0,20 1,19 0,15 0,01	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90 0,60 1,61 0,18 1,11 0,15 0,01	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21 0,71 1,84 0,20 1,27 0,14 0,01	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03 0,61 1,66 0,20 1,43 0,21 0,01	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34 0,69 1,90 0,22 1,70 0,24 0,02	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49 0,49 1,41 0,17 1,06 0,14 0,01	ion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73 0,55 1,62 0,19 1,19 0,15 0,02	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52 3,26 0,63 1,66 0,22 1,27 0,16 0,02	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62 0,70 1,92 0,25 1,40 0,18 0,02	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07 0,63 1,81 0,25 1,33 0,18 0,02	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64 0,67 1,91 0,27 1,41 0,18 0,02	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03 0,70 2,12 0,28 1,53 0,20 0,02	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85 4,02 0,93 2,48 0,34 2,04 0,29 0,06	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23 0,60 1,68 0,21 1,27 0,17 0,02
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165 Er166 Tm169 Yb172 Lu175 Hf178 Pb208	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55 0,50 1,50 0,17 1,02 0,15 0,01 0,06	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,49 2,64 0,51 1,62 0,18 1,03 0,14 0,02 0,06	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41 0,51 1,26 0,18 1,06 0,14 0,02 0,05	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47 2,60 0,57 1,32 0,20 1,19 0,15 0,01 0,05	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90 0,60 1,61 0,18 1,11 0,15 0,01 0,06	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21 0,71 1,84 0,20 1,27 0,14 0,01 0,06	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03 0,61 1,66 0,20 1,43 0,21 0,01 0,06	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34 0,69 1,90 0,22 1,70 0,24 0,02 0,06	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49 0,49 1,41 0,17 1,06 0,14 0,01 0,06	tion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73 0,55 1,62 0,19 1,19 0,15 0,02 0,06	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,64 4,49 0,52 3,26 0,63 1,66 0,22 1,27 0,16 0,02 0,06	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62 0,70 1,92 0,25 1,40 0,18 0,02 0,06	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07 0,63 1,81 0,25 1,33 0,18 0,02 0,07	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64 0,67 1,91 0,27 1,41 0,18 0,02 0,06	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03 0,70 2,12 0,28 1,53 0,20 0,02 0,06	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85 4,02 0,93 2,48 0,34 2,04 0,29 0,06 0,13	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23 0,60 1,68 0,21 1,27 0,17 0,02 0,06
Element Ca43 Ca44 V51 Ga71 Sr88 Y89 Ba137 La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165 Er166 Tm169 Yb172 Lu175 Lu175 Hf178 Pb208 Th232	12329,32 14469,42 1,08 5,18 18,16 16,40 0,12 107,35 137,22 11,22 34,01 5,21 0,65 4,08 0,48 2,55 0,50 1,50 0,17 1,02 0,15 0,01 0,06 5,65	12329,51 14763,49 1,10 5,48 19,29 17,08 0,13 111,16 139,93 11,41 34,92 5,54 0,68 4,28 0,49 2,64 0,51 1,62 0,18 1,03 0,14 0,02 0,06 5,78	12327,66 14039,11 0,99 4,52 15,32 13,69 0,12 117,54 141,23 11,25 34,84 4,44 0,58 3,72 0,44 2,41 0,51 1,26 0,18 1,06 0,14 0,02 0,05 4,96	12328,04 15410,62 1,08 4,77 16,28 14,38 0,12 138,47 157,04 12,47 37,43 4,58 0,64 3,86 0,47 2,60 0,57 1,32 0,20 1,19 0,15 0,01 0,05 5,10	Vale 12328,36 14966,04 1,04 5,04 20,62 15,75 0,12 114,92 139,51 11,27 36,28 4,72 0,59 4,03 0,50 2,90 0,60 1,61 0,18 1,11 0,15 0,01 0,06 5,68	eurs standard 12328,95 16242,86 1,16 6,02 25,26 17,69 0,15 128,38 154,75 12,24 40,79 5,17 0,62 4,19 0,55 3,21 0,71 1,84 0,20 1,27 0,14 0,01 0,06 6,31	interne Durar 12328,51 13439,42 1,13 4,91 19,06 17,16 0,14 118,97 180,42 15,55 41,38 5,50 0,81 4,82 0,52 3,03 0,61 1,66 0,20 1,43 0,21 0,01 0,06 7,43	ngo à 1 sigma 12328,79 13930,09 1,24 5,07 21,22 18,72 0,16 127,13 209,41 18,84 45,51 6,20 0,94 5,30 0,59 3,34 0,69 1,90 0,22 1,70 0,24 0,02 0,06 8,50	en ppm ; sess 12330,17 14663,43 1,05 4,55 15,49 13,67 0,14 101,76 134,26 10,76 34,07 4,60 0,56 3,81 0,47 2,49 0,49 1,41 0,17 1,06 0,14 0,01 0,06 5,08	tion 26 mars 2 12331,04 15936,35 1,18 4,80 16,62 15,32 0,14 108,76 140,97 11,61 37,56 5,16 0,60 4,38 0,53 2,73 0,55 1,62 0,19 1,19 0,15 0,02 0,06 5,65	2019 12330,45 18841,39 1,15 6,19 24,16 18,94 0,16 128,94 189,17 12,48 48,23 6,04 0,52 3,26 0,63 1,66 0,22 1,27 0,16 0,02 0,06 8,25	12331,65 21838,78 1,21 6,88 29,92 21,53 0,18 141,08 226,42 13,46 55,65 6,85 0,69 4,94 0,57 3,62 0,70 1,92 0,25 1,40 0,18 0,02 0,06 9,97	12332,01 19483,39 1,23 6,38 19,25 20,30 0,17 139,04 203,67 12,99 43,66 7,28 0,83 5,51 0,61 4,07 0,63 1,81 0,25 1,33 0,18 0,02 0,07 9,99	12332,16 20751,99 1,23 7,28 20,70 22,74 0,19 150,24 232,15 13,34 49,61 8,59 0,91 6,34 0,66 4,64 0,67 1,91 0,27 1,41 0,18 0,02 0,06 11,53	12332,98 23531,87 1,32 7,96 22,21 24,92 0,18 157,72 255,20 14,27 51,33 9,46 0,99 6,75 0,71 5,03 0,70 2,12 0,28 1,53 0,20 0,02 0,06 12,90	Durango 9μm 12386,32 22243,45 1,15 6,59 27,78 38,94 0,31 203,12 276,72 18,48 72,77 8,89 1,35 7,34 0,85 4,02 0,93 2,48 0,34 2,04 0,29 0,06 0,13 10,45	Moyenne STD 15 µm 12329,97 16820,55 1,15 5,67 20,24 17,89 0,15 126,10 176,09 12,88 41,68 5,96 0,72 4,70 0,54 3,23 0,60 1,68 0,21 1,27 0,17 0,02 0,06 7,52

Annexe 4.3 : Données standard secondaire Durango sur ICP-MS Element XR, taille du faisceau 15 µm ; 3^{ème} partie.

Element	Valeurs star ppm ;	ndard interne session 2 avri	durango en I 2019	Moyenne Durango	Valeurs star sigma en p	ndard interne pm ; session 2	durango à 1 2 avril 2019	Moyenne STD
Ca43	358966,19	347582,31	321008,84	342519,11	50744,22	62087,15	11823,92	41551,76
Ca44	389369,06	389369,09	389368,97	389369,04	12317,70	12317,96	12318,06	12317,91
V51	26,07	28,95	24,73	26,58	1,87	2,47	1,38	1,91
Ga71	111,58	117,65	99,72	109,65	8,44	11,09	5,11	8,21
Sr88	448,26	475,61	444,09	455,99	33,34	44,18	26,20	34,57
Y89	430,16	464,12	411,81	435,36	48,76	67,49	20,57	45,61
Ba137	1,84	2,10	3,24	2,39	0,61	0,70	0,62	0,64
La139	3007,79	3260,16	2997,14	3088,36	200,37	267,80	103,00	190,39
Ce140	4015,14	4003,47	3780,70	3933,10	443,09	561,62	155,73	386,81
Pr141	323,96	354,43	296,08	324,82	20,56	27,76	10,20	19,51
Nd146	1088,95	1060,84	948,62	1032,80	86,97	106,55	52,90	82,14
Sm147	134,22	135,85	116,77	128,95	11,98	15,32	6,60	11,30
Eu153	18,69	17,16	14,76	16,87	1,45	1,65	0,65	1,25
Gd157	113,68	114,15	101,58	109,80	10,84	13,69	4,56	9,70
Tb159	13,46	14,80	13,03	13,76	1,40	1,95	0,55	1,30
Dy163	71,50	75,31	69,97	72,26	6,58	8,69	3,62	6,30
Ho165	14,61	14,63	13,62	14,29	1,73	2,20	0,55	1,49
Er166	40,04	41,18	37,33	39,52	3,37	4,33	3,11	3,60
Tm169	4,64	4,85	4,27	4,59	0,30	0,36	0,31	0,32
Yb172	28,33	30,22	24,90	27,82	1,75	2,19	1,58	1,84
Lu175	3,90	3,86	4,11	3,96	0,34	0,42	0,20	0,32
Hf178	b.d.l	b.d.l	b.d.l	/	0,05	0,05	0,10	0,07
Pb208	b.d.l	0,74	0,64	0,69	0,16	0,16	0,16	0,16
Th232	161,89	162,08	137,90	153,96	18,04	22,91	4,86	15,27
U238	7,97	8,20	6,86	7,68	0,58	0,74	0,29	0,54

Annexe 4.4 : Données standard secondaire Durango sur ICP-MS Element XR, taille du faisceau de 12 µm ; 4^{ème} partie.

					Conce	ntration des	éléments r	najeur en po	oids d'oxyde	e				
Echantillon	SiO2	Al2O3	Fe2O3 tot	MgO	CaO	Na2O	K2O	TiO2	MnO	P2O5	Ba	Sr	LOI	TOTAL
LP-17-10	69,71	16,59	1,72	0,65	1,63	4,57	3,66	0,26	0,02	0,09	0,07	0,02	0,88	99,88
LP-17-11	71,78	16,56	0,61	0,21	0,70	4,44	5,22	0,04	0,03	0,03	0,08	0,03	0,19	99,74
LP-17-14	70,05	15,75	2,04	0,74	1,36	4,65	4,06	0,31	0,02	0,10	0,06	0,02	0,79	99,16
GLG-2	47,75	12,86	12,60	10,25	11,26	2,21	1,26	0,56	0,24	0,03	0,01	0,01	0,55	99,05
MAK-G2	71,67	15,55	1,68	0,46	2,07	6,18	1,45	0,21	0,03	0,09	/	/	0,22	99,69

Annexe 5 : Tableau des concentrations en éléments majeurs des roches totales des différents échantillons. L'échantillon MAK-G2 provient de la littérature (Laurent *et al.,* 2015), les autres sont analysés au LMV.

				Co	oncentrat	ion des éléme	nts trace	s des roches t	otale en p	pm. Comparais	on entre l	e LMV et le SA	RM				
Laboratoire				LN	٧V							SAR	М				Littérature
Échantillon	LP-17-10	Incertitude (ppm)	LP-17-11	Incertitude (ppm)	LP-17-14	Incertitude (ppm)	GLG-2	Incertitude (ppm)	LP-17-10	Incertitude (ppm)	LP-17-11	Incertitude (ppm)	LP-17-14	Incertitude (ppm)	GLG-2	Incertitude (ppm)	MAK-G2
Be	1,66	0,15	1,40	0,13	2,33	0,21	2,86	0,26	1,55	0,23	1,31	0,20	1,98	0,13	2,59	0,17	2
V	8,58	0,33	1,95	0,08	12,31	0,48	246,84	9,57	7,5	1,12	1,7	0,25	11,7	1,17	241	48,10	16
Cr	5,48	0,09	0,26	0,00	19,12	0,32	719,38	12,05	8,2	0,82	3,6	0,36	21,9	4,38	820	163,96	11
Co	2,44	0,01	0,41	0,00	2,77	0,02	62,24	0,37	2,16	0,43	0,30	0,07	2,49	0,12	60,8	12,17	3
Ni	4,22	0,13	0,53	0,02	5,02	0,16	225,27	7,08	4,8	0,24	2,0	0,10	5,8	1,16	202	40,44	4
Cu	1,30	0,06	3,50	0,17	2,12	0,10	0,84	0,04	3,2	0,80	3,7	0,92		0,00		0,00	/
Zn	32,73	1,49	4,62	0,21	42,67	1,95	116,15	5,30	38,0	7,59	8,7	2,18	47,7	2,39	122	12,21	/
Ga	13,36	3,59	12,49	3,35	15,65	4,20	10,97	2,95	18,1	0,91	18,8	0,94	22,1	4,42	16,8	3,36	22
Ge	0,72	0,00	0,13	0,00	0,79	0,00	3,26	0,00	0,63	0,13	0,72	0,14	0,80	0,04	1,64	0,16	/
As	0,17	0,00	0,02	0,00	0,15	0,00	0,10	0,00	0,64	0,16		0,00	0,76	0,03		0,00	/
Rb	147,72	0,53	147,57	0,53	182,07	0,65	44,17	0,16	141	7,04	147	7,37	171	34,15	43,5	8,71	48
Sr	209,32	3,43	262,18	4,30	205,41	3,37	124,60	2,04	210	10,51	273	13,63	197	39,33	126	25,11	558
Y	3,14	0,18	3,71	0,22	6,35	0,37	14,48	0,85	2,66	0,40	3,16	0,47	5,87	0,39	13,2	0,88	5
Zr	172,75	7,17	13,91	0,58	163,33	6,78	26,03	1,08	155	7,75	18,4	2,76	131	26,12	25,3	1,69	87
Nb	5,11	0,15	1,16	0,03	11,46	0,34	3,79	0,11	4,12	0,41	0,98	0,20	8,96	0,90	2,98	0,30	6,5
Cd	0,07	0,00	0,02	0,00	0,07	0,00	0,14	0,00	0,05	0,01	0,02	0,01	0,04	0,00	0,18	0,01	/
Sn	1,75	0,49	0,38	0,11	1,82	0,51	1,80	0,51	2,21	0,44	0,62	0,00	1,90	0,09	1,94	0,10	/
Cs	4,14	0,13	1,23	0,04	4,70	0,15	2,04	0,07	3,93	0,59	1,22	0,18	4,32	0,29	1,88	0,13	4,3
Ba	773,55	9,72	833,95	10,47	755,06	9,48	91,13	1,14	719	35,96	874	43,68	661	132,29	88,0	17,61	289
La	39,97	2,35	4,11	0,24	33,64	1,98	1,29	0,08	38,9	1,95	4,60	0,69	40,0	7,99	1,28	0,09	20,7
Ce	69,61	2,38	6,76	0,23	61,52	2,10	3,31	0,11	68,0	3,40	7,75	1,16	73,6	14,73	3,34	0,22	38,2
Pr	6,01	0,61	0,65	0,07	5,44	0,55	0,50	0,05	6,35	1,27	0,836	0,17	7,17	0,36	0,552	0,03	4,1
Nd	20,32	0,94	2,42	0,11	18,93	0,88	2,92	0,14	19,6	2,94	2,79	0,56	22,7	1,52	2,97	0,15	14,6
Sm	2,75	0,06	0,50	0,01	2,97	0,06	1,19	0,03	2,52	0,38	0,574	0,11	3,38	0,23	1,19	0,08	2,2
Eu	0,64	0,00	0,43	0,00	0,63	0,00	0,45	0,00	0,606	0,06	0,426	0,04	0,605	0,06	0,450	0,04	0,65
Tb	0,14	0,02	0,06	0,01	0,21	0,03	0,30	0,04	0,133	0,03	0,071	0,02	0,238	0,01	0,330	0,02	0,18
Gd	1,32	0,09	0,37	0,03	1,68	0,12	1,68	0,12	1,41	0,14	0,422	0,08	2,09	0,21	1,62	0,16	1,49
Dy	0,61	0,02	0,49	0,02	1,15	0,04	2,41	0,08	0,615	0,09	0,467	0,07	1,19	0,12	2,32	0,23	0,87
Ho	0,11	0,00	0,11	0,01	0,21	0,01	0,51	0,02	0,103	0,02	0,109	0,02	0,205	0,01	0,516	0,03	0,16
Er	0,25	0,04	0,31	0,05	0,47	0,07	1,22	0,18	0,254	0,03	0,346	0,03	0,535	0,05	1,43	0,29	0,42
Tm	0,04	0,00	0,06	0,00	0,07	0,00	0,21	0,01	0,0378	0,01	0,0624	0,02	0,0722	0,00	0,213	0,01	0,06
Yb	0,24	0,02	0,42	0,03	0,43	0,03	1,32	0,09	0,262	0,05	0,436	0,09	0,461	0,02	1,36	0,09	0,37
Lu	0,04	0,00	0,06	0,00	0,07	0,00	0,21	0,01	0,039	0,01	0,064	0,02	0,067	0,00	0,223	0,01	0,06
Hf	4,35	0,19	0,68	0,03	4,37	0,19	0,76	0,03	4,41	0,44	0,93	0,14	4,03	0,40	0,80	0,05	2,5
Та	0,35	0,00	0,05	0,00	0,67	0,01	0,16	0,00	0,36	0,07	0,06	0,01	0,68	0,03	0,17	0,01	0,3

Annexe 6 : Tableau des concentrations des éléments en traces en roche totale mesurées au LMV, au SARM et provenant de la littérature (MAK-G2 ; Laurent *et al.,* 2015) mesure utilisée pour les gneiss gris Swasa-96 et Swasa-98. Uniquement les éléments mesurés dans les deux laboratoires sont représentés.

Annexe 7.1 : Spectres des concentrations roche totale en éléments en traces de l'échantillon LP-17-10 analysé par el LMV et le

SARM. Quand la barre d'erreur n'est pas visible, elle est comprise dans le symbole.

Annexe 7.2 : Spectres des concentrations roche totale en éléments en traces de l'échantillon LP-17-11 analysé par el LMV et le SARM. Quand la barre d'erreur n'est pas visible, elle est comprise dans le symbole.

Annexe 7.3 : Spectres des concentrations roche totale en éléments en traces de l'échantillon LP-17-14 analysé par el LMV et le SARM. Quand la barre d'erreur n'est pas visible, elle est comprise dans le symbole.

Annexe 7.4 : Spectres des concentrations roche totale en éléments en traces de l'échantillon GLG-2 analysé par el LMV et le SARM. Quand la barre d'erreur n'est pas visible, elle est comprise dans le symbole.

Ésh an till an	1		Concer	ntrations		Pb20	7/U235	Pb206	5/U238	Dha	Pb206	/U238	Pb207/	Pb206	0 0/
Echantilion	Analyse	Pb ppm	Th ppm	U ppm	Th/U	Rapport	2σ erreur	Rapport	2σ erreur	кпо	Age (Ma)	2σ erreur	Age (Ma)	Pb207/Pb206	Concordance %
	Zr76	381,27	412,75	732,47	0,56	12,35	0,37	0,43	0,01	0,92	2324	53,25	2877	52,65	80,79
	Zr77	758,92	456,84	1652,37	0,28	11,12	0,33	0,39	0,01	0,92	2114	49,17	2889	52,59	73,16
	Zr80	528,76	380,74	1082,25	0,35	11,73	0,35	0,43	0,01	0,91	2305	52,95	2809	53,40	82,07
	Zr85	326,73	313,90	789,10	0,40	9,33	0,28	0,37	0,01	0,91	2018	47,25	2690	54,06	75,00
	Zr89	235,51	405,67	818,39	0,50	5,79	0,18	0,26	0,01	0,89	1465	35,85	2503	56,13	58,53
	Zr90	353,59	514,15	887,97	0,58	9,36	0,29	0,35	0,01	0,90	1913	45,30	2798	54,42	68,38
10 17 10	Zr95	295,65	33,53	836,31	0,04	8,14	0,25	0,33	0,01	0,89	1862	44,10	2619	55,23	71,10
LP-17-10	Zr97	534,00	347,36	1329,84	0,26	9,06	0,27	0,37	0,01	0,90	2016	47,13	2643	54,90	76,27
	Zr98	276,01	215,32	519,17	0,41	12,61	0,38	0,47	0,01	0,89	2464	55,86	2797	54,42	88,09
	Zr100	170,26	61,64	336,32	0,18	12,66	0,39	0,46	0,01	0,89	2454	55,71	2812	54,66	87,27
	Zr101	189,43	27,24	912,08	0,03	3,96	0,12	0,21	0,01	0,89	1203	29,91	2227	57,93	54,02
	Zr102	271,95	240,59	1238,99	0,19	3,48	0,11	0,21	0,01	0,89	1233	30,54	1953	59,70	63,12
	Zr107	523,31	354,84	1203,76	0,29	9,86	0,30	0,39	0,01	0,88	2132	49,50	2675	55,74	79,69
	Zr108	14,74	0,14	24,41	0,01	17,22	0,61	0,57	0,02	0,81	2908	67,98	2974	61,74	97,77
10.47.44	Zr57	103,15	30,49	194,27	0,16	13,76	0,42	0,48	0,01	0,91	2543	58,20	2877	53,67	88,39
LP-17-11	Zr58	139,51	50,78	245,83	0,21	15,41	0,47	0,51	0,01	0,92	2652	60,09	2978	52,80	89,07
	Zr7	33,64	15,97	48,10	0,33	19,46	0,60	0,60	0,02	0,92	3041	68,52	3080	52,95	98,75
	Zr9	119,75	35,55	169,71	0,21	18,60	0,54	0,60	0,02	0,94	3030	66,90	3016	50,79	100,47
	Zr10	330,28	242,68	629,69	0,39	12,77	0,37	0,45	0,01	0,95	2400	55,26	2869	51,15	83,66
	Zr12	292,08	233,65	456,20	0,51	15,56	0,45	0,54	0,01	0,95	2783	62,31	2898	50,91	96,04
	Zr13	67,21	45,25	93,07	0,49	19,92	0,60	0,61	0,02	0,93	3083	68,46	3090	51,66	99,79
	Zr14	48,21	27,45	64,69	0,42	20,55	0,62	0,63	0,02	0,93	3141	69,45	3102	51,60	101,27
	Zr17	272,98	215,36	423,81	0,51	15,46	0,45	0,55	0,02	0,95	2813	62,82	2866	51,21	98,16
	Zr18	144,96	140,85	233,45	0,60	14,62	0,44	0,52	0,01	0,92	2710	61,74	2850	53,10	95,11
	Zr20	22,29	20,44	33,39	0,61	15,72	0,50	0,56	0,02	0,90	2875	65,82	2849	55,50	100,92
	Zr21	25,94	28,22	37,88	0,74	15,72	0,49	0,56	0,02	0,90	2869	65,43	2854	54,96	100,52
	Zr22	23,89	21,62	35,80	0,60	15,91	0,50	0,56	0,02	0,90	2868	65,52	2873	55,05	99,82
	Zr23	22,32	23,06	32,97	0,70	15,51	0,49	0,56	0,02	0,89	2862	65,58	2837	55,71	100,90
LP-17-14	Zr29	110,54	71,22	180,67	0,39	15,35	0,45	0,53	0,01	0,94	2754	61,86	2897	51,72	95,08
	Zr30	149,70	121,49	318,75	0,38	12,10	0,37	0,40	0,01	0,92	2181	51,48	2965	52,68	73,55
	Zr31	382,49	180,77	609,79	0,30	15,87	0,46	0,56	0,02	0,95	2884	63,84	2858	51,21	100,91
	Zr32	356,38	166,76	574,63	0,29	15,55	0,45	0,56	0,02	0,95	2852	63,21	2848	51,21	100,12
	Zr33	339,01	152,37	539,72	0,28	15,95	0,46	0,56	0,02	0,95	2874	63,66	2873	51,21	100,03
	Zr34	308,28	138,07	500,32	0,28	15,39	0,45	0,55	0,02	0,95	2845	63,15	2836	51,42	100,35
	Zr35	361,09	175,64	581,86	0,30	15,39	0,45	0,56	0,02	0,95	2851	63,18	2832	51,36	100,67
	Zr36	352,98	192,60	634,45	0,30	13,47	0,39	0,50	0,01	0,94	2615	58,95	2786	51,60	93,85
	Zr39	463,71	227,36	712,45	0,32	16,36	0,48	0,58	0,02	0,94	2947	64,89	2865	51,45	102,88
	Zr40	385,36	198,10	616,51	0,32	15,99	0,46	0,55	0,02	0,94	2843	63,00	2899	51,18	98,08
	Zr42	375,01	178,03	586,07	0,30	16,02	0,47	0,57	0,02	0,94	2913	64,23	2853	51,45	102,10
	Zr43	490,54	200,60	733,30	0,27	17,59	0,52	0,60	0,02	0,94	3029	66,36	2927	51,45	103,49
	Zr45	285,27	10,98	847,70	0,01	8,39	0,24	0,33	0,01	0,94	1816	43,35	2715	52,23	66,90
	Zr46	300,41	149,01	468,80	0,32	16,25	0,47	0,56	0,02	0,94	2886	63,75	2895	51,42	99,69
	Zr51	174,27	30,38	340,93	0,09	13,22	0,40	0,47	0,01	0,92	2479	56,79	2862	52,92	86,59
	Zr52	329,40	60,13	768,75	0,08	10,81	0,32	0,37	0,01	0,94	2046	47,97	2904	51,54	70,45
LP-17-20	Zr53	321,11	154,78	380,43	0,41	27,31	0,80	0,69	0,02	0,94	3401	72,36	3391	49,53	100,31
	Zr54	649,51	215,39	995,32	0,22	20,46	0,60	0,58	0,02	0,94	2951	64,74	3220	50,13	91,65
	Zr55	416,37	240,54	738,40	0,33	13,95	0,41	0,50	0,01	0,93	2594	58,50	2861	52,05	90,67
	Zr56	356,76	143,02	587,86	0,24	15,44	0,46	0,54	0,01	0,93	2793	62,13	2878	52,08	97,02

Annexe 8.1 : Tableau récapitulatif des analyses U-Pb sur les zircons.

Éshaatillaa	Analyse		Conce	ntrations		Pb20	6/U238	Pb207/U235		Pb20	8/Th232	Pb20	6/U238	Pb2	207/U235	Pb208	/Th232
Echanulion	Analyse	Pb ppm	Th ppm	U ppm	Th/U	Rapport	2σ erreur	Rapport	2σ erreur	Rapport	2o erreur	Âge (Ma)	2σ erreur	Âge (Ma)	2σ erreur	Âge (Ma)	2σ erreur
	Mnz 1.1	9561	63130	1873	34	0,52	0,02	14,85	0,60	0,15	0,00	discordant	1	discordant	1	2788	86
	Mnz 1.2	10859	65057	4631	14	0,51	0,02	14,07	0,57	0,14	0,00	discordant	1	discordant	1	2706	84
	Mnz 2.1	10982	65797	3983	17	0,53	0,02	14,62	0,59	0,15	0,00	2733	87	2791	112	2784	86
	Mnz 2.2	8627	58127	1891	31	0,56	0,02	15,87	0,64	0,14	0,00	2854	91	2869	116	2733	84
	Mnz 2.3	10524	65021	3787	17	0,52	0,02	15,01	0,61	0,15	0,00	discordant	1	discordant	1	2773	86
	Mnz 2.1 bis	6750	60152	2800	21	0,47	0,02	14,05	0,57	0,10	0,00	discordant	1	discordant	1	discordant	1
	Mnz 3.1	4481	27810	1840	15	0,53	0,02	15,34	0,63	0,14	0,00	discordant	1	discordant	1	2671	82
	Mnz 3.2	8929	56433	3470	16	0,52	0,02	14,58	0,60	0,14	0,00	discordant	1	discordant	1	2668	82
	Mnz 3.3	10254	62177	3871	16	0,53	0,02	15,29	0,63	0,15	0,00	discordant	1	discordant	1	2780	86
	Mnz 4.1	10025	61629	3394	18	0,53	0,02	14,73	0,61	0,15	0,00	2751	87	2798	116	2806	86
Swasa-89	Mnz 4.2	7824	50599	2461	21	0,51	0,02	14,79	0,62	0,14	0,00	discordant	1	discordant	1	2729	84
	Mnz 5.1	10756	68339	3421	20	0,54	0,02	15,34	0,65	0,14	0,00	2775	88	2837	120	2735	84
	Mnz 5.2	11424	74848	4435	17	0,54	0,02	15,48	0,65	0,13	0,00	2781	88	2846	120	discordant	1
	Mnz 6.1	9837	57980	3998	15	0,53	0,02	14,75	0,63	0,15	0,00	2738	87	2799	119	2800	86
	Mnz 6.2	9751	59138	3987	15	0,53	0,02	14,90	0,64	0,15	0,00	2736	87	2809	120	2738	84
	Mnz 7.1	9943	57865	3905	15	0,54	0,02	15,17	0,65	0,15	0,00	2771	88	2826	121	2859	88
	Mnz 7.2	9599	57789	3547	16	0,54	0,02	15,66	0,68	0,15	0,00	discordant	1	discordant	1	2802	86
	Mnz 8.1	7485	46080	2004	23	0,53	0,02	15,18	0,67	0,15	0,00	2746	87	2827	125	2904	89
	Mnz 8.2	6967	45372	1428	32	0,54	0,02	15,02	0,67	0,15	0,00	2766	88	2817	126	2845	87
	Mnz 10.2	8057	53684	991	54	0,53	0,02	15,04	0,68	0,15	0,00	2759	88	2818	128	2896	89
	Mnz 10.3	8752	53485	3838	14	0,53	0,02	14,98	0,67	0,14	0,00	2746	87	2814	126	2652	81
	Mnz 1.1	9677	60224	2655	23	0,53	0,02	14,83	0,58	0,15	0,00	2749	90	2804	110	2839	90
	Mnz 1.2	9401	57716	3197	18	0,51	0,02	14,66	0,58	0,15	0,00	discordant	1	discordant	1	2787	88
	Mnz 2.1	9047	61198	1380	44	0,53	0,02	15,42	0,61	0,15	0,00	discordant	1	discordant	1	2792	88
	Mnz 2.2	8787	60327	774	78	0,54	0,02	15,93	0,64	0,15	0,00	2802	92	2873	115	2839	90
	Mnz 3	9269	56651	3071	18	0,55	0,02	15,58	0,61	0,15	0,00	2828	92	2851	112	2848	90
	Mnz 4.1	11918	70935	4650	15	0,55	0,02	15,71	0,62	0,15	0,00	2839	92	2859	112	2813	88
Swasa-91	Mnz 4.2	10842	66823	3265	20	0,56	0,02	16,05	0,63	0,15	0,00	2884	93	2880	114	2851	90
Swasa-31	Mnz 5.1	7151	45913	2388	19	0,54	0,02	15,76	0,63	0,14	0,00	discordant	1	discordant	1	2691	84
	Mnz 5.2	10135	69594	1384	50	0,54	0,02	15,18	0,62	0,15	0,00	2779	90	2827	115	2801	87
	Mnz 5.3	10005	58233	3974	15	0,54	0,02	15,32	0,62	0,15	0,00	2785	89	2835	114	2833	88
	Mnz 5.1 bis	10203	62267	3902	16	0,54	0,02	15,15	0,61	0,15	0,00	2772	89	2825	114	2768	86
	Mnz 5.2 bis	7895	46400	3486	13	0,52	0,02	14,27	0,58	0,15	0,00	2696	86	2768	112	2791	87
	Mnz 6.1	7584	51626	1458	35	0,53	0,02	16,23	0,67	0,15	0,00	discordant	/	discordant	/	2767	86
	Mnz 6.2	6715	46195	836	55	0,50	0,02	14,84	0,62	0,15	0,00	discordant	1	discordant	/	discordant	/

Annexe 8.2 : Tableau récapitulatif des analyses U-Th-Pb sur les monazites. En rouge les analyses discordantes.

Roche	Point mesure microsonde	Ca43	Ca44	V51	Ga71	Sr88	Y89	Ba137	La139	Ce140	Pr141	Nd146	Sm147	Eu153	Gd157	ТЬ159	Dy163	Ho165	Er166	Tm169	ҮЬ172	Lu175	HF178	РЬ208	Th232	U238
	5	385652,66	434092,03	b.d.l	66,65	300,84	4040,95	b.d.l	254,88	993,99	195,46	1233,95	606,85	21,29	903,42	143,73	805,87	131,03	317,04	34,72	182,34	20,63	0,0278	5,96	0,288	4,1
	7	385009,41	431431,56	b.d.l	144,4	279	3683,08	b.d.l	799,95	2927,7	489,03	2522,06	947,99	16,1	1154,55	161,95	817,71	118,88	252,97	23,83	109,25	12,45	0,0254	5,87	3,4	38,35
	8	383937,34	434022,06	b.d.l	52,31	327,42	2531,24	b.d.l	166,13	723,07	149,84	956,75	490,03	30,8	685,94	110,04	602,26	92,87	192,88	19,49	88,68	9,25	0,0217	5,59	0,677	25,62
	10	391870,53	440467,09	0,69	43,62	292,56	1672,25	b.d.l	160,11	620,98	117,87	716,87	328,7	14,31	449,08	69,51	387,6	63,26	141,52	13,37	65,78	6,96	0,0258	5,87	1,34	14,55
LP-17-11	11	382865,31	428977,13	1,58	126,71	264,64	2757,71	b.d.l	550,81	2253,07	428,86	2533,69	1250,74	18,03	1489,15	178,26	723,35	90,69	167,57	15,53	73,17	8,05	0,0135	6,06	3,14	46,54
(plot)	12	388582,91	433270,94	b.d.l	109,48	261,89	2395,04	0,202	468,91	1932,98	372,84	2189,92	1102,74	15,38	1322,28	158,32	631.84	78,72	147,52	13,26	61.62	6,77	0.028	5.3	0.845	17,43
	13	382436.47	448292.19	0.57	33,75	289.26	5582.51	b.d.l	53.86	320.41	82.46	600.07	428.87	14.03	768.91	147.31	951.94	174,95	456.85	50.98	266.24	31.66	0.111	5.1	0.0341	14.58
	14	381721.78	436073.44	1.36	104.17	246.29	2850.72	bdl	371.37	1660.37	344,28	2155.89	1162.04	18,76	1513.74	179.03	731.76	94.8	185.34	18.39	89.24	9.88	0.0118	7.72	6.45	75.99
	15	386367.34	434860.75	ĥdl	38.9	164,78	836.61	bdl	206.7	624.84	92.35	458.81	156.8	21	171.72	25.19	142.97	27.9	83.58	11.38	66.81	8.04	0.0165	4,99	1.873	13.17
	16	387367.91	432304.5	b.d.l	28.28	355.67	1195.92	b.d.l	23.64	185.24	57.81	480.68	423.52	8.46	666.77	84.83	348.88	42.33	77.98	6.89	32.25	3.33	b.d.l	11.46	0.202	4.14
	17	392513.75	455048.25	0.62	40.08	146.18	2159.36	b.d.l	187.01	578.83	100.24	540.08	231.82	21.29	297.36	52.69	353.03	71.64	210.8	27.24	150.53	17.5	0.0087	4,79	1,213	19.27
	18	388225.47	444813.34	6.dl	30.15	154,92	1293.63	bdl	132.09	410.94	65.39	342.45	143.05	19.34	188.37	32.27	213.94	43.58	126.35	15.95	89.28	10.83	0.0154	4.77	0.991	6.23
	19	387439.25	453941.28	hdi	32.64	145,76	1368 44	bdl	146.28	471.24	74.25	378.51	148 12	20.47	192,45	33.61	225.43	46.48	135,81	17.22	98.52	12	0.0038	4.52	1503	9
	20	389369	451564.84	hdi	40 17	138 84	1983 5	hdi	96.11	499.86	108.83	663.27	293 24	12.66	335.11	53 59	347.23	66.87	190 55	24.58	135.16	16.85	0.0147	4 58	0.657	11 11
	21	389511.94	453729.88	hdl	34.09	157,35	1793 74	hdi	126.54	458.31	79.71	436.61	198 42	20.45	270.28	47.83	320.11	62 29	172 04	20.04	103 24	12 01	0.0257	47	2 77	15,89
	22	393943.13	460507.03	h.dl	31.07	146.44	1726.04	0.277	110.16	380.7	66.83	377.24	178.12	30.59	249.33	44,38	285.87	59.38	172.56	20.71	112,74	13.32	0.0206	3.94	2.063	20.89
	23	390584.03	449435 41	0.85	46.05	156 82	1807 88	0.279	228 89	718.66	122.2	675.33	243.37	18 87	298.34	46.44	299.08	60.65	177 72	2165	115.4	14 22	hdl	5 18	0.891	11.25
	24	384580.56	446422 41	hdl	33.31	155 02	1554.06	hdl	156 78	482 47	74.39	375.8	156.66	19.17	208 25	37.52	257 79	52 75	148 59	17.9	96 59	11.53	bdl	5.01	0.58	6 7 9
	25	388797.28	450674.06	hdl	35.04	153 59	1634 62	0.208	164 25	513.56	8123	416.89	171.57	21.94	225.07	40.81	276.2	55.86	161.52	19.62	110.7	13.06	0.0338	5 48	1569	9.01
LP-17-14	26	392084 91	453483.03	hdi	39.17	167,22	2035.26	0.311	188,78	599.53	94.33	484 71	198.65	25.16	27151	49.86	336.47	69 12	196,08	23.17	124.3	14 67	h d l	5,92	3.65	18 25
(plot)	27	391012.84	447694 38	h d l	36.31	153 32	1591.39	Ьdl	173 51	543.4	83.53	432 41	171 71	20,18	225.96	38.08	258.49	53,09	156 1	19.85	110 61	13.32	0.0166	5 19	0.989	8 18
1	28	392585 19	452122 72	0.93	34 37	149.05	1427.66	h d l	165 13	510.23	78.26	398 34	161,22	19.45	213.65	37	240,88	48 57	142.68	17 51	101 53	12.4	0,0076	4 99	123	9.57
	29	387582.25	453958 53	ьdi	68.27	173,83	2459 15	h d l	403.6	1294 24	205.36	1033.66	340.67	17.05	383.91	64.82	425 55	84 74	235.2	27 49	147 58	17 28	b d l	5.01	1 313	14 01
	30	387796 72	445937.94	b.d.	45	147 21	205156	b.d.	213.2	703 59	120 73	661 18	254.4	18.85	302,81	49 77	323,87	67.89	196.3	25.5	143.4	17,65	0.0362	4 95	1052	15.88
	31	394014 59	44362122	0.7	34.02	145 37	1519.29	0.235	131.68	442 14	75 35	418 34	175 19	18.6	235 15	37.61	250.26	51.64	151.92	18 36	102 59	12 02	0,0002	45	0.716	10.2
	34	386009.97	443021,22	БДІ	36,92	157.26	1788 77	ь <u>д</u>	175	545.65	87.18	450.33	182.82	20.97	245.84	43.49	294.96	60.61	177 82	2151	115.03	13,62	0,0100	5 14	1799	16 44
	35	392084.94	438843 34	b.d.	35.41	143.7	1745.09	h d l	166 98	535,99	85.17	434 13	176 1	20,56	231.23	42.94	284,82	59.04	171.07	21.05	117.8	13,69	0,0011	51	2.64	13,56
	36	390584.06	446177 75	b.d.	36.94	143.83	1750 23	b.d.	181,82	554.6	87.87	458.3	186 35	18 79	242 35	41.85	279.51	59.45	175.6	22.04	125.65	15,53	5,000, 5 d l	53	1599	15,00
	38	389512.03	452743 31	b.d.	4172	138 78	1740 64	ьdi	198.63	695 73	123 52	706.04	260,89	17.63	293.54	46.09	284.29	56,53	162.09	19.53	111 21	13,23	b.d.i	4 19	0.335	5.24
	39	388868 78	440624 53	b.d.	36 32	159.02	1734.85	b.d.	179.83	555 79	86.57	435.83	190.28	22.19	240.74	40,00 A1 99	290,29	58.47	172 92	20.93	112 93	13,42	0.058	5,65	1895	13 79
	41	385152.38	440024,00	0.47	49.05	208.62	2104.02	<u>b.d.</u>	301.89	831.44	136 55	724 72	315.66	22,10	446.91	72.95	425.53	78.25	201.39	19.22	91.28	10.27	0.053	6.32	1/050	14.64
	42	386867.66	445837.75	b.dl	43,03	214 24	2316 28	b.d.	188,87	620.59	114 43	640.83	313,00	20,98	470.35	78 15	47158	86.15	201,00	20.48	97 57	10,27	0,000	5 99	2 451	19.6
	43	387224,97	437366 72	b.d.	37.45	205.18	1755.89	b.d.	198,73	567.54	91.91	468 35	231 32	25,30	357.97	60.44	361.51	64 73	161.48	15 97	76.64	8.42	0,023	6.61	2 348	19.77
	45	388368.5	437218.06	ь.d.	38.01	203,10	1842 44	ь.d.	207.01	567 78	94.8	513.86	251,34	22,14	388.1	62,49	377 43	70.16	172,99	16 11	74.04	8.38	5,015	5.61	0.843	9.2
	45	2000000,0	449279.00	ь.d.	37.0	212.25	2229 2	5.d.)	165.95	546.24	91.06	504.56	264.02	21.16	401.00	74 51	4511	02.52	197.57	10,11	91 56	10,00	0.0215	5,01 6.5	2,040	10 / E
	49	389797 91	443273,00	b.d.	A1 94	210,20	1992.32	b.d.i	2/171	679.09	11/1/26	609.15	204,02	22.02	420.8	69.54	415.91	74.22	190,97	17 / 9	20,00 20,04	86	5,0215 5 d l	5.79	11/19	11.47
	40	202727,21	443402,33	5.0.1 5.dl	41,04	212,00	1332,33 0100 0	6.0.1	241,71 175.45	673,03 522,22	00.00	490.90	200,00	23,03	420,0 200 CO	03,34 C7 00	410,01	74,22 77.00	100,34	10,43	00,04 01.05	10.25	5.0.1 5.dl	6.27	1,143	17.00
LP-17-20	43	200202,31	447211,20	D.U.I 6. d I	30,03 42.55	224,27	2103,0 1005 E0	5.0.1 5.41	170,40 229.0E	022,22	112.10	430,36	240,00	22,00	300,00 200 E2	07,03 C4 70	420,01	77,30 C0 E0	107,00	13,04	70.00	0.05	0.0.1	0,27 E E2	0.077	11,00
(plot)	50	203220,13	440247,31 4EC001.CC	D.U.I E. HI	43,00	201,70	2142.10	D.U.I E. J.I	200,00 200 EC	070,34 C17 E0	00.00	510,14 520,42	200,04	22,03	330,32 201.07	04,70 CC 07	300,03	03,03 70 07	100,07 107 EE	17,04	73,30	0,00 10.05	이이이 이	0,03	1572	10,00
	50	330003,70	400001,00	D.U.I	33,00	210,43	2142,10	D.U.I L J I	230,00	017,00	33,02	023,43 700.01	206,61	21,3	331,07	05,07	411,24 E00.77	10,37	134,00	13,63	32,37	14,10	0.0107	6,00	1,073	12,02
	52	369011,72	446700,66	D. G. I	43,33	220,03	2746,24	D.G.I	300,47	803,25 C40 1	131,44	722,21	323,23	21,43	463,62	01,10	208,77	37,62	203,44	20,66	70.01	14,13	0,0107	5,35	1,612	10,63
	24	331084,38	441383,34	D. G. I	42,87	203,03	1072,00	D. G. I	227,33 100.0E	643,1 COO 70	103,2 100.0E	036,07 E04 C	201,42	20,01	412,75	60,64 70,70	333,72 400.00	70,89	1/ 1,42	17,01	72,31 00.05	8,3/ 0.00	0,0081	0,34 C 00	1,382	11,58
	20	330441,13	443738,41	D. G. I	42,12 40,70	212,67	2063,24	D. G. I	138,35	632,72 C40,17	110,30	034,5 000,40	280,35	20,2	432,4	70,73	423,23	77,15 00.00	183,33	17,31	82,60 100 12	3,36 10.10	D. G. I	6,0Z	2,234	14,15
	58	JUJ63,63	440837,03	D. d. l	42,72	210,37	2344,63 1350 5	D. G. I	224,08	643,17	10,73	608,46 EAE AE	308,63 254,70	28,12	467,9	74,98	4/3,3/	86,83 40.05	220,51	21,35		12,15 E 00	0,013	6,87 4 0 4	2,38	23
	1 23	392370,75	458078,13	D.d.I	34,7 10,50	224,5	1250,5	D.d.I	131,78	454,01	89,53	545,45	254,73	21,4	351,41	51,5	287,08	48,85	117,39	10,12	45,54	5,23	D. d. l	4,04	0,893	3,45
	60	392370,78	451596,97	b.d.l	40,53	216,45	2243,65	b.d.l	264,56	688,66	TH,23	587,56	280,21	22,69	420,42	67,98	408,66	77,03	191,1	19,27	93,19	10,59	b.d.l	5,53	1,686	17,18

Annexe 9.1 : Tableau des analyses LA-ICP-MS en ppm des apatites 1^{ère} partie.

Roche	Point mesure microsonde	Ca43	Ca44	V51	Ga71	Sr88	Y89	Ba137	La139	Ce140	Pr141	Nd146	Sm147	Eu153	Gd157	Tb159	Dy163	Ho165	Er166	Tm169	Yb172	Lu175	Hf178	Pb208	Th232	U238
	61	400089,56	433131,88	6,74	15,64	110,49	79,28	0,242	32,43	66,11 130,47	8,07	37,13	9,31	2,93	13,37	2,069	12,98	2,61	7,74	0,855	5,14	0,897	b.d.l	3,67	5,93	43,21
	63	396444.59	430135,03	6,11	15,1	113,04	77.82	0,275 h.dl	27 09	120,41 50,93	6.35	69,03 32,09	9.23	4,68	20,27	2,93	13,69	3,97	8.34	1,241	9,05 7,59	1,302	0,014 h.d.l	8,09	23,33	86
	64	397516,63	433627,06	5,24	14,84	116,82	50,32	0,341	21,73	39,21	4,47	21,45	5,62	2,098	8,49	1,257	7,94	1,663	5,22	0,669	4,3	0,671	b.d.l	3,88	5,24	41,8
	65	396944,88	435027,59	4,87	16,62	116,55	104,2	0,298	43,07	89,1	10,58	47,17	11,97	4,31	17,07	2,64	16,68	3,6	11,12	1,292	8,63	1,445	0,0021	7,06	16,52	94,35
	66	399231,91	444127,06	5,12	16,01	111,08	60,5	b.d.l	27,61	52,92	6,48	29,07	7,59	2,69	10,83	1,619	10,15	2,19	6,51	0,755	4,62	0,792	b.d.l	4,11	5,06	32,17
GLG-2	67	396944.97	433133,31 440518.03	5,94 6.48	15,47	120,14	75,58	0,61	29,44	55,85 72,93	9.46	34,07 47 16	10,73	3,71	13,87	2,24	16,61	2,78	8,62 10,06	1313	7,67	1,343	0,0101	7,16 9,59	30,87	87,9 96,66
(plot)	71	395729,97	430012,94	6,2	15,91	97,73	86,38	b.d.l	30,75	63,83	8,17	37,15	9,87	3,59	14,07	2,17	14,26	2,88	9,12	1,104	6,86	1,052	0,0039	5,15	13,36	83,97
	72	399374,97	433791,75	4,92	15,93	115	84	0,431	36,28	70,48	8,69	40,76	9,41	3,65	13,63	1,987	13,47	2,77	8,52	0,995	6,61	0,999	0,016	5,39	10,71	68,27
	73	398731,72	442933,22 442465 41	5,96	15,99	116,77	75,96 414 57	0,32	33,2 164.96	50,57	7,73	36,45	8,84	2,88	12,69	1,988	12,34	2,55	8,42	0,987	6,06	1,039	b.d.l	5,44	16,08	60,96
	76	399446.41	443463,41	4,20	28,24	113.65	414,07	b.d.l	55.1	124.82	17.29	240,87 86.22	20.57	4.69	26.22	3,56	20.92	4.14	36,36 11.26	4,44	7.42	1.224	0.0076	0,03 7.52	20.08	41,0
	77	398302,88	435162,69	7,36	16,05	117,25	84,78	0,235	34,57	64,32	8,02	36,77	10,04	3,37	14,33	2,14	13,46	2,96	8,69	0,98	6,32	1,127	b.d.l	4,51	8,1	58,92
	78	398374,34	442012,75	3,71	15,83	123,59	81,14	b.d.l	41,84	70,41	8,48	38,28	10,45	3,43	15,26	2,22	13,9	2,86	7,85	1,023	7,56	1,244	0,0021	9,15	26,68	147,78
	81	395658,47	4381/9,16	1,96 5 d l	17,32	107,34	141,86	<u> </u>	52,66 254 71	790.07	14,04	67,38	218.76	5,46 23,47	25,27	3,61	22,84	4,87	14,53	1,671	10,76	1,561	<u>b.d.l</u>	<u> </u>	19,75	26.83
	83	394800,81	439230,5	b.d.l	38,84	169,62	874,02	b.d.l	198,28	608,11	93,27	476,93	167	20,83	185,35	26,32	153,94	29,67	86,54	11,14	68,11	8,38	0,0192	4,78	0,875	10,75
	84	394514,94	449677,03	b.d.l	40,19	166,42	850,86	b.d.l	200,64	622,38	100,55	549,77	189,97	21,81	201,53	27,48	152,54	29,34	86,47	11,37	67,13	8,48	b.d.l	4,82	1,095	11,41
	85	394657,88	449078,97	b.d.l	37,31	169,1	959,51 755.04	b.d.l	197,24	594,74	92,64	459,42	166,13	22,39	189,14	27,82	167,8	32,46	95,38 74,70	12,7	73,92	9,44	b.d.l	4,61	1,288	9,92
	87	394014,59	434862,44	b.a.i b.d.l	35,48 71.24	166,45	755,94 1819-43	b.d.i	401.73	548,4 1355.45	86,49 227 4 3	443,1 1154.24	372 72	20,42	374 75	24,06 53,59	314.5	26,17 62,29	74,76 182,05	23.31	58,83 135.07	7,33 174	0.0238	4,46	13.99	135.34
	91	398803,09	429408,16	b.d.l	47,85	168,4	1029,97	b.d.l	234,18	770,12	127,76	688,83	238,23	20,66	242,9	32,23	182,98	35,41	102,34	13,72	79,98	9,95	b.d.l	5,34	1,43	21,26
LP-17-10	92	398803,09	455277,41	b.d.l	42,31	166,86	1014,36	b.d.l	163,23	627,69	114,89	656,86	236,88	22,35	248,68	33,11	186,66	36,14	102,4	12,94	78,87	9,56	0,0039	4,59	1,544	42,68
(prot)	93	392871,05 392971.09	436058,06	b.d.i	35,15 40,26	162,45	949,03 1011 29	b.d.l	202,29	612,08 662,06	96,24 110 97	508,31	181,66 211,77	20,31	197,21	26,32	155,31	30,21	92,27 100.96	13,04	68,45 75,27	8,4 9.29	b.d.l	4,25	1,137	9,64 16,61
	94	391941,97	441169,41	b.d.l	42,55	167,12	889,6	0,245	187,5	637,57	110,23	626,85	218,39	20,34	227,55	29	156,05	29,98	88,36	11,31	67,14	8,3	b.d.l	4,42	1,304	16,04
	96	399303,38	435479,13	b.d.l	38,68	170,43	856,62	b.d.l	200,86	606,4	92,72	468,17	170,48	21,01	187,37	25,82	148,82	27,95	85,04	11,13	66,31	8,37	b.d.l	4,59	1,275	13,48
	97	396373,13	453485,09	b.d.l	46,91	169,97	1106,02	b.d.l	221,04	744,2	128,83	692,67	246,85	21,41	252,17	34,32	198,61	38,34	115,12	14,65	85,83	10,55	0,0148	5,24	1,972	28,95
	99	394943.69	444308,66	0.51	40,32	167,02	929.7	b d l	242,36	745,21 529,42	86.21	620,66 472,81	219,22	22,57	231,84	27.46	163,44	35,44 31.44	96.57	12.26	63,93 72,34	8 41	b.a.i h.d.l	5,11 4.08	2,508	26,64
	100	394657,81	444713,19	b.d.l	45,17	173,67	1050,36	b.d.l	240,96	753,15	119,88	611,56	216,2	22,44	232,92	31,61	184,9	36,63	107,16	13,65	81,19	10,6	0,0044	4,87	1,673	19,29
	101	390941.34	441493.81	b.d.l	32.88	171.43	804.09	b.d.l	194.90	582.92	96.31	482.99	169.16	22.68	180.60	25.66	145.43	29.00	76.95	9.99	58.31	6.79	b.d.l	3.79	1.256	7.20
	102	395229.56 290226.69	443140.91	b.d.l	30.07	162.22	907.62 oce ov	b.d.l	181.02 170.95	579.00 542.06	94.35	476.87 444.69	181.24 100 50	27.18	199.10 195.50	28.36 26.29	166.32 169.74	31.33	86.75 04 01	11.43	67.90 C4 Q4	7.71	b.d.l	4.28	2.75	11.09 9.20
	103	394300.47	430364.41	b.d.i	20.73	145.55	844.08	b.d.i	142 15	042.06 462.64	07.72 75.40	444.65 386.03	149.98	20.15	171.36	26.35	150.52	29.62	82.42	10.76	64.54 64.76	7.60	0.030 hdl	3.47	3.04 172	4.73
	109	391727.53	438508.34	b.d.l	27.42	164.71	764.93	b.d.l	156.30	507.91	75.34	386.01	147.18	23.50	160.71	23.46	140.06	28.49	72.77	10.06	56.78	6.73	b.d.l	4.43	2.42	10.77
SWASA-	112	396230.16	430219.97	b.d.l	28.65	164.67	795.96	b.d.l	155.13	487.33	81.68	426.01	156.87	25.35	171.71	24.07	140.72	26.64	74.13	9.36	55.13	6.73	0.0236	4.71	1.75	7.09
89 (Iame)	113	389511.97	422632.06	b.d.l	29.31	167.01	800.99	b.d.l	174.07	561.65	89.74	462.05	166.78	24.09	175.90	24.55	142.17	27.81	77.28	9.55	59.16	6.91	0.055	3.94	1.56	6.78
	110	399303.44	430719.50	b.d.i	20.07	156.91	7 34.03 916 96	b.a.i b.d.l	100.04	401.30 587.94	93.23	402.00	105.56	24.00 28.02	171.00	24.32 28.57	146.62	33.13	76.52 92.28	5.75 11.64	71.25	6.55 8.15	0.030	4.12	2.40	0.00
	116	392585.25	418264.53	b.d.l	28.42	195.05	735.87	b.d.l	171.75	537.63	86.65	430.56	152.88	22.36	173.25	23.41	145.93	26.36	74.94	9.77	55.70	6.83	b.d.l	4.05	3.91	10.08
	117	395801.41	446457.84	b.d.l	30.43	164.04	839.89	0.43	179.02	555.96	91.15	440.67	166.24	24.22	183.73	26.16	158.76	29.12	80.61	9.77	60.24	7.04	b.d.l	3.86	2.033	7.26
	121	387653.81	467247.84	<u>b.d.l</u>	29.52	169.35	793.18	<u>b.d.l</u>	182.91	564.16	93.55	476.88	169.38	23.00	190.07	25.81	153.17	28.67	81.02	10.02	61.01	6.71	<u>b.d.l</u>	3.92	1.684	8.40
	126	394371.94 397516.63	438988.44 458817.06	b.d.i	28.02 27.20	147.20	189.11	b.a.i	169.62	511.55	82.21 80.8 4	332.42 429.81	195.98	20.36 27.44	194.94	32.81	208.07 255.27	41.59	120.14	15.89	91.68 106.31	10.52	b.a.i b.d.i	4.42 4.72	1.342	8.31 16.40
	128	392871.06	467321.97	b.d.l	29.97	155.49	1382.16	b.d.l	188.22	578.31	90.22	456.02	183.32	22.17	231.73	37.48	239.61	46.93	134.27	18.10	103.90	12.60	0.039	4.57	1.99	15.41
	130	391370.22	445681.41	b.d.l	29.99	154.16	1449.53	b.d.l	172.72	554.19	91.59	464.41	187.97	26.23	240.51	40.53	257.47	50.82	147.05	18.93	114.25	13.20	0.034	4.36	2.37	11.41
	131	394229.00	470239.47	b.d.l	36.72	162.31	1644.38	b.d.l	215.12	738.92	125.76	672.96	265.10	20.08	306.76	47.09	290.75	56.37	168.63	21.28	128.44	15.38	b.d.l	4.92	0.902	22.91
	133	387868.16 387510.78	419718.75 453402.78	5.d.i	27.96	147.17 152.95	1272.60	D. d. I b. d. I	1/ 3.22	517.12 473.63	79.71	425.76 380.75	153,12	21.50	213.80	35.57 32.88	233.35 215.04	43.45 43.07	127.20	15.33	99.32 89.20	10.91	D.G.I 5 d l	4.11 A 19	0.726	7.74
	135	401590.41	449987.50	b.d.l	28.48	152.83	1411.73	b.d.l	180.29	559.07	88.87	473.77	194.98	22.85	241.56	39.30	250.72	50.10	139.41	17.61	108.50	12.69	0.046	4.43	1.22	6.57
SWASA-	137	401876.31	445833.06	b.d.l	27.02	159.40	1203.99	b.d.l	137.35	433.31	69.84	355.91	150.48	23.34	188.95	32.92	209.46	42.90	116.39	14.95	89.78	10.81	b.d.l	4.20	1.75	9.18
91(lame)	138	402662.56	475495.09	b.d.l	39.00	161.05	2210.12	b.d.l	243.23	831.86	131.56	697.39	285.58	35.91	376.50	63.08	402.08	77.54	214.48	28.97	175.80	21.58	b.d.l	6.47	10.25	52.87
	139	400304.03	456935.53	b.d.l	30.48 34.54	160.90 179.50	1368.45	b.d.l	182.15	577.34 E9E.00	88.74	465.74	182.60 194.59	23.39	228.74	37.58	238.02 267.45	47.28 E4.12	134.71	18.00	109.49	13.05	b.d.l	4.20 E.00	1.95	13.79
	141	393657.28	478320.34	b.d.i	34.54	155.36	1331.94	b.d.i	176.84	549.01	89.57	454 88	187.33	27.00	237.85	40.65	287.40	45.46	140.01	17.30	104 50	12.51	b.d.i	4.58	2.23	13.69
	143	402948.41	468204.66	b.d.l	32.27	164.13	1402.44	b.d.l	195.83	615.20	99.96	522.97	203.80	22.00	248.56	41.00	258.63	49.60	136.50	17.63	107.65	12.92	b.d.l	4.56	1.269	7.64
	144	398517.19	461299.28	b.d.l	32.98	172.44	1415.98	0.70	191.44	593.90	101.60	516.64	218.99	27.27	253.10	40.16	270.96	51.56	151.01	19.22	111.18	13.81	0.078	5.22	4.92	40.04
	145	393943.13	488702.06	b.d.l	32.55	162.01	1557.76	b.d.l	165.27	587.99	105.32	624.25	254.78	25.17	313.52	46.10	286.25	54.02	150.63	20.40	117.27	13.28	b.d.l	4.59	1.62	10.20
	146	333803.66 400875.69	434004.38 501876.97	D. a. I b. d. l	33.03 40.06	166.24 166.03	1988.50	D. a. I b. d. l	193.11 251.25	585.94 787 04	94.78 128.83	527.37 663.94	196.17 267.97	28.98 29.43	265.72 332.42	41.92 53.48	274.07 334.95	53.89 68.29	199.29 185.54	20.84 25.02	126.45 157.02	15.28 18.50	D.a.1 b.d.1	5.02 5.85	3.72 7.02	18.87 44.09
	153	393085.47	462242.06	b.d.l	28.58	152.08	1566.52	b.d.l	164.01	552.45	88.44	465.64	192.33	29.48	253.49	44.55	281.67	55.34	166.93	21.17	125.66	14.60	b.d.l	5.11	3.52	12.82
SWASA-	154,1	395301.03	441186.53	7.44	14.79	126.27	90.49	b.d.l	33.19	62.75	7.74	38.77	11.63	3.20	16.26	2.35	15.11	3.43	9.24	1.145	7.22	0.992	b.d.l	5.59	12.98	44.33
95 (lame)	154,2	395301.06	454831.56 450755 50	12.76	16.37 14 45	140.21	102.17	b.d.l	38.88	71.53	8.86	46.66	13.06	3.47	18.29	2.80	18.12	3.70	10.23	1.287	7.98	1.249	b.d.l	6.45 c 70	16.66 17.70	60.09 50.50
	104,5	333301.03	430700.03	10.20	14.40	133.31	100.45	D.Q.I	30.00	03.22	3.00	40.30	13.03	3.30	10.04	2.74	10.14	3.60	10.45	1.400	7.31	1.203	D.Q.1	0.70	17.75	33.33

Annexe 9.2 : Tableau des analyses LA-ICP-MS en ppm des apatites 2^{ème} partie.

Roche	Point mesure microsonde	Ca43	Ca44	V51	Ga71	Sr88	Y89	Ba137	La139	Ce140	Pr141	Nd146	Sm147	Eu153	Gd157	Tb159	Dy163	Ho165	Er166	Tm169	Yb172	Lu175	Hf178	Pb208	Th232	U238
SWASA- 96 (lame)	210 213 214 217 218 219 221 222 224 228 229 230 231 232 238 237 238 237 238 237 238 237 238 237 239 240 242 244 245 249 265 266 267 270 273 274 273 274 273 274 280 287	39294259 38929759 39501759 39551553 39351434 39456641 389654,97 3836654,97 39372878 39372878 39372878 39372878 39372878 39372878 39372878 39372878 39372878 394515.00 3887973.34 394515.00 387737.34 394529.03 394529.03 394529.03 394529.03 394529.03 394529.03 394529.03 394529.03 394529.03 394529.03 394529.03 394508.67 394529.03 3950867.2 3950867.2 3950867.2 3950867.2 394600.88 394600.88 394600.88 394600.88 394600.88 394600.88 394600.88	424729.84 441955.94 426192.41 449818.53 452378.56 454193.69 427869.53 463084.78 455398.19 455056.06 459104.81 450256.06 459104.81 452352.06 45940.38 455399.69 461648.78 430762.59 461249.81 450367.75 439507.13 449078.84 465381.50 443237.09 431066.13 45295.25 448021.91 454612.41 437085.06 441321.31	$\begin{array}{c} 7.46\\ 5.12\\ 10.05\\ 8.71\\ 1.92\\ 17.21\\ 13.56\\ 5.47\\ 3.29\\ 6.36\\ 0.76\\ 4.74\\ 4.75\\ 4.38\\ 8.43\\ 2.12\\ 1.87\\ 8.43\\ 2.12\\ 1.87\\ 8.32\\ 8.43\\ 9.25\\ 10.12\\ 6.04\\ 2.59\\ 10.12\\ 5.67\\ 12.22\\ 5.27\\ 5.03\\ 16.59\\ 14.49\\ 14.49\\ \end{array}$	39,57 47,14 43,41 42,34 61,40 32,51 36,89 42,89 45,48 18,89 28,07 25,23 28,07 25,23 28,07 25,23 28,07 27,50 24,51 32,42 40,22 37,99 27,50 32,42 40,22 37,91 27,51 32,42 40,22 37,91 27,51 32,42 40,22 37,91 27,51 32,42 40,22 37,91 27,51 32,42 40,22 37,91 27,51 32,42 40,22 37,91 27,51 32,42 40,22 37,41 41,51 41,51 42,51 54,51 54,51 54,51 54,51 54,515	662.68 644.31 541.96 649.12 640.73 715.93 649.22 667.59 670.23 620.52 670.23 628.79 777.91 696.82 667.51 731.28 668.46 667.51 638.46 667.51 633.51 668.46 667.51 633.51 663.46 663.51 663.51 663.92 664.62 663.92 664.62 664.72 664.72 664.70 664.72 664.70 665.73 666.25 667.185	829.12 1275.85 1218.87 1062.39 2155.34 802.09 854.95 1050.03 1247.58 2917.47 1642.67 930.26 999.40 1445.09 1446.98 1742.04 1737.30 1159.87 1664.97 1185.72 1202.47 1157.47 1624.27 1277.28 1319.86 1040.78 1157.4 1157.032 2040.06 1419.57 1101.15 1269.50	0.706 b.d.l b.d.l b.d.l 0.366 0.263 0.426 0.361 0.569 b.d.l b.d.l 0.569 b.d.l b.d.l 0.29 0.247 0.31 0.29 0.247 0.31 b.d.l 0.29 0.247 0.31 b.d.l 0.29 0.247 0.31 b.d.l 0.380 b.d.l 0.366 b.d.l 0.380 b.d.l 0.366 b.d.l 0.380 b.d.l 0.366 b.d.l 0.380 b.d.l 0.380 b.d.l 0.366 b.d.l 0.366 b.d.l 0.29 0.247 0.310 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.366 b.d.l 0.29 0.247 0.310 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.366 b.d.l 0.29 0.247 0.380 b.d.l 0.366 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.381 0.43 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 b.d.l 0.380 0.366 b.d.l 0.380 0.366 b.d.l 0.380 0.366 b.d.l 0.380 0.366 b.d.l 0.380 0.366 b.d.l 0.380 0.3666 0.366 0.366 0.366 0.3666 0.3666 0.3666 0.	179.24 133.89 115.41 153.36 264.11 120.47 148.02 159.34 150.7 153.00 15.07 153.00 15.07 74.90 74.90 74.90 74.90 74.90 74.90 74.90 96.36 65.43 118.91 234.27 75.25 141.77 153.14 76.86 30.36 41.12 26.55 149.31 77.33 141.94 20.03	591.41 613.10 528.79 577.90 940.55 287.90 943.37 513.83 588.46 82.25 566.72 73.64 263.00 241.69 268.30 241.69 268.30 241.69 268.30 241.69 268.30 241.69 268.30 241.69 268.30 241.69 243.65 213.82 235.46 663.92 235.46 535.56 535.56	102.321 132.21 114.26 115.57 180.86 96.71 118.82 46.42 117.40 19.34 46.97 50.93 62.45 49.46 95.32 76.08 124.20 53.48 109.66 24.58 55.50 124.20 53.48 24.58 55.53 24.86 24.58 55.53 21.14 109.66 24.58 55.53 21.14 109.66 24.58 55.53 21.14 109.66 24.58 55.53 21.14 109.66 24.58 55.53 21.14 109.66 24.58 24.59 24	615.85 897.11 794.89 759.35 1170.59 447.97 615.33 785.74 229.06 801.30 174.92 235.64 383.02 318.61 342.37 304.40 246.13 247.79 304.40 246.13 248.32 619.87 647.19 375.08 133.28 471.82 952.37 615.54 962.37 615.57 145.90	181.28 334.86 293.56 294.37 425.44 150.38 200.84 272.41 140.33 334.59 112.57 144.31 150.55 145.73 145.71 145.74 104.36 130.49 104.36 132.40 182.40 182.40 182.40 182.40 182.31 75.25 143.73 108.93 176.124 322.52 144.93 176.124 322.52 144.93 176.124 322.52 144.93 176.124 322.52 144.37 188.38 198.34 198.34 198.35 198.45 198.35 198.35 198.45 198.35 198.45 198.35 198.45 198.35 198.45 198.35 198.45 198.35 198.35 198.45 198.35 198.35 198.45 198.35 198.45 198.35 198.45 198.35 198.45 198.35 198.45 198.35 198.45 198.35 198.45 198.45 198.45 198.45 198.45 198.45 198.45 198.45 198.45 198.45 198.45 198.45 198.45 198.45 198.45 199.45	18.94 18.43 14.82 19.79 54.62 22.91 18.55 19.87 26.24 62.30 42.99 26.24 62.30 42.99 26.24 62.30 30.21 38.82 58.68 64.01 36.56 64.01 36.56 64.01 36.57 33.81 15.71 37.34 43.93 30.27 32.00 18.19 20.64 19.27 8.20 19.71 21.65 19.71 21.65 21.11 27.95	215.08 379.19 345.22 302.70 531.34 194.85 224.84 308.58 223.72 483.76 221.57 200.92 206.68 222.16 224.94 2251.52 222.16 222.18 173.59 276.71 229.60 333.04 224.13 414.51 216.25 220.75 195.49 265.99 265.98 498.68 353.19 265.93 269.88 498.68 353.19 269.75 189.52	26.67 50.42 42.46 39.22 69.487 27.92 38.300 72.38 36.19 28.24 36.37 28.24 36.34 41.81 39.27 28.40 42.59 31.93 34.54 42.59 31.93 34.64 54.73 34.64 54.73 34.55 53.30 34.55 53.40 46.43 36.76 53.40 46.43 36.76 53.40 46.43 36.76 31.97	153,59 270,45 240,38 213,53 397,13 142,28 154,83 210,85 259,99 174,86 233,83 230,10 278,22 272,20 277,20 278,22 272,20 278,22 272,20 278,22 272,20 278,22 272,20 278,22 272,20 278,22 272,20 278,25 5 193,26 213,25	27,85 46,92 43,76 37,72 75,64 37,72 47,13 30,29 37,29 45,04 53,92 46,76 48,89 57,06 56,75 37,72 54,85 40,43 42,77 43,00 58,01 54,85 40,43 42,77 43,00 58,01 54,85 40,43 42,77 43,00 54,85 43,00 54,85 43,00 54,85 43,00 54,85 43,00 54,85 43,00 54,85 43,00 54,85 43,00 54,85 43,00 54,85 55,85 54,85 55,85 55,85 55,85 55,85 55,85 55,85 55,85 55,85 55,85 55,85 55,855,8	78.27 118.85 114.04 95.24 215.73 76.73 77.29 96.14 117.67 275.32 110.94 86.53 93.28 93.28 93.28 93.28 93.28 138.06 105.49 115.66 115.66 115.66 115.66 115.66 115.66 115.02 123.15 130.15	9.87 14.56 13.84 11.62 28.57 9.66 9.69 12.14 50 37.77 22.99 11.62 18.35 22.62 13.96 21.56 22.62 13.96 21.56 22.62 13.96 14.87 19.30 17.92 14.87 19.30 17.88 14.87 19.30 17.88 14.87 19.30 17.88 14.87 19.30 17.88 14.87 19.30 17.88 14.87 19.30 17.88 14.87 19.30 17.87 19.30 17.87 19.50	65.59 82.37 81.83 70.31 179.93 61.01 61.34 72.01 108.34 259.52 154.45 121.55 121.55 121.55 137.13 144.91 90.40 97.91 81.69 92.76 115.21 125.48 97.91 81.69 92.76 115.21 125.60 131.50 80.44 93.90 216.61 96.05 111.42	8.85 10.86 9.44 24.64 8.68 8.22 9.75 35.40 21.64 9.15.27 16.32 16.88 17.72 19.57 11.750 12.75 10.46 17.50 12.75 10.46 14.68 17.91 14.68 17.91 14.68 17.91 14.93 14.93 14.93 15.33 17.13 10.00 15.43	0.037 0.0078 b.dl b.dl b.dl b.dl b.dl 0.0420 b.dl 0.034 b.dl b.dl b.dl b.dl b.dl b.dl b.dl b.dl	3,74 3,02 4,83 3,77 3,87 3,86 4,07 3,87 3,86 4,87 4,80 4,44 4,55 5,10 4,37 3,02 3,04 4,55 5,10 4,37 3,02 3,04 4,55 5,10 4,37 3,02 3,04 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4	0.0912 0.273 2.080 0.224 2.230 0.0272 0.0119 0.144 0.165 0.358 1.164 0.0862 0.160 0.158 0.160 0.158 0.160 0.195 0.634 0.224 0.288 0.224 0.288 0.224 0.288 0.224 0.288 0.576 0.310 0.576 0.310 0.600 0.275 0.527 0.528 0.126 0.139	5.36 10.88 3.63 3.66 3.05 1.766 8.71 20.58 11.04 3.25 3.36 6.79 5.76 7.57 6.87 2.576 7.57 6.87 2.3.63 5.777 3.24 10.84 8.43 6.05 3.24 10.84 6.83 6.05 3.65 9.09 11.31 9.73 4.05 6.32
SWASA- 98 (lame)	301 302 311 312 313 315 316 317 320 321 322 325 326 328 329 331 335 337 338 339 341 344 346 347 348 350 356 366 366 365 366 366 366 366 366 378	39094144 395229.69 396230.22 389512.03 397345.50 395285.22 395601.38 395759.91 395759.91 395759.91 3935657.73 3935657.73 3935657.75 392871.06 393442.90 401590.47 401876.31 402562.50 400232.53 400232.53 400245.75 3939617.22 400875.75 400947.25 400947.25 400947.25 400947.25 400947.25 400947.25 400947.25 400947.25 400947.25 400947.25 397961.61 401304.66 402365.25 4004520.78 396605.27 4004520.78	417557,81 447833,38 472100,16 448531,94 430114,66 454328,84 457306,28 428719,19 441361,69 4426712,59 445675,34 457554,50 4462406,41 434710,69 457382,31 458466,41 458466,41 458466,41 458466,41 458466,41 458466,41 458466,41 458466,41 458466,41 458466,41 458466,41 458466,41 458466,41 4584570,75 441828,09 445785,22 446278,38 447702,56 453955,22 4463363,981 447806,59 424637,53 440765,506 436599,03 453320,47	16.71 19.28 8.18 11.70 17.74 25.32 18.81 18.09 1.53 b.d.1 18.38 12.69 1.51 19.80 1.15 19.80 12.19 1.15 19.88 8.37 21.59 5.88 8.37 21.59 5.88 8.37 21.59 9.99 9.99 4.77 13.71 10.05 8.83 12.03 15.35 11.09 15.35 11.09 15.35	37,44 32,83 63,03 28,40 21,42 19,13 26,02 20,54 22,40 20,73 24,88 25,64 19,86 17,92 30,14 21,74 42,40 21,74 42,40 21,39 38,13 25,82 36,07 22,55 18,59 25,50 28,11 28,07 29,53 18,62 29,53 18,62 21,750	633.98 673.45 669.08 644.00 673.19 638.71 606.99 646.71 606.99 641.90 641.90 641.90 641.90 641.90 641.90 642.58 653.99 709.63 636.45 744.27 672.62 636.45 744.27 672.64 635.64 634.64 634.64 634.64 634.65 643.07 715.51 710.56 667.110 663.60 670.10 558.18 736.07 724.22	767.32 701.69 1932.91 1096.95 834.70 870.73 2112.02 1056.75 1073.53 952.54 1085.54 1085.54 1085.54 1085.54 1085.54 1085.60 1435.07 876.31 1470.93 682.08 964.91 940.43 2031.59 577.06 806.61 765.82 563.04 711.13 863.33 853.85 1166.30 988.28 831.41 916.94 536.42 443.73 1131.80	0.60 0.95 0.44 0.63 b.dl 0.39 0.68 b.dl 0.70 0.31 0.54 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.39 0.44 b.dl 0.39 0.44 b.dl 0.39 0.44 b.dl 0.39 0.44 b.dl 0.39 0.44 b.dl 0.39 0.44 b.dl 0.39 0.44 b.dl 0.39 0.44 b.dl 0.39 0.44 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.54 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.45 b.dl 0.47 b.dl 0.47 b.dl 0.47 b.dl 0.41 b.dl 0.47 b.dl 0.47 b.dl 0.47 b.dl 0.47 b.dl 0.41 b.dl 0.47 b.dl 0.47 b.dl 0.41 b.dl 0.47 b.dl 0.41 b.dl 0.47 b.dl 0.47 b.dl 0.47 b.dl 0.41 b.dl 0.47 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0.41 b.dl 0	107.91 84.94 184.45 21.05 9.97 24.86 13.33 27.77 21.11 35.48 29.09 7.11 35.48 29.09 37.94 5.05 16.84 37.94 5.05 16.84 37.94 5.05 16.84 34.83 22.72 26.20 78.39 45.22 96.83 10.97 15.87 56.46 35.74 34.56 11.70 35.38 47.66	354.94 259.41 665.15 94.69 38.33 99.81 56.62 90.54 68.07 141.26 68.07 141.26 68.07 141.26 25.54 174.12 52.54 174.12 52.54 174.12 55.59 395.30 83.03 86.25 55.59 395.30 83.03 86.25 55.59 395.30 83.03 86.25 595.30 83.03 86.25 295.44 118.89 314.61 148.89 314.61 148.89 314.61 148.89 314.61 148.89 314.61 148.92 314.61 148.73 317.75 395.30 88.06 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 41.86 4	77.23 55.24 157.73 46.82 25.81 12.19 16.04 33.42 33.34 12.58 6.47 47.90 12.58 6.47 47.90 12.58 6.47 47.90 12.58 6.47 47.90 12.58 6.47 47.90 1.55 36.70 76.55 36.70 71.31 34.33 78.71 50.02 50.02 50.02 10.19 21.99 25.50 11.31 34.57 10.19 25.50 11.31 37.87 1.31 36.70 1.31 37.71 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50.02 50	586.43 441,72 1270.63 395.26 222.32 358.16 215.60 227.55 162.07 270.31 318.83 69.60 435.60 649.98 103.24 226.55 103.24 226.25 103.24 226.22 190.06 796.47 171.89 197.41 197.41 197.41 567.51 20.35 377.39 183.74 446.79 444.60 101.09 147.48	211.27 162.01 477.39 96.62 236.40 143.68 123.06 91.61 127.89 91.61 127.89 91.61 127.89 91.61 127.89 91.61 127.89 77.35 78.17 202.56 338.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.63 74.35 138.66 91.43 132 126.66 91.47 200.58 91.43 132 126.66 91.47 200.58 132.66 91.47 200.58 126.66 91.47 200.58 127.21 200.58 128.63 128.63 128.63 128.63 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65 128.65	35,64 30,87 71,08 36,99 22,81 19,28 40,19 23,95 26,66 22,62 36,27 41,47 40,79 40,68 48,97 27,39 76,66 48,97 27,39 716,61 41,37 40,77 90,72 50,29 75,05 23,22 31,38 29,76 23,22 31,18 26,92 23,20 31,18 26,92 23,22 31,20 31,18 26,92 27,92 31,18 26,93 27,93 32,30 31,18 26,92 27,292 33,63 32,20 31,18 32,22	226.57 185.48 542.98 246.13 167.43 167.43 167.43 167.43 167.43 167.43 167.43 167.43 167.43 167.43 167.43 177.45 170.12 186.32 251.97 197.68 252.02 424.03 128.59 214.37 195.74 496.82 136.06 180.23 277.25 177.86 226.15 190.12 169.99 282.65 321.95 272.21 258.17 258.17 258.17 258.17 258.17 258.51	27.78 22.30 65.14 23.25 23.63 58.19 30.54 27.77 22.13 27.68 31.95 27.50 34.63 31.28 27.50 34.63 31.27 27.50 34.63 31.27 20.83 12.32 19.38 28.31 26.70 18.64 24.27 20.83 26.70 18.64 25.78 31.27 20.83 26.70 18.64 25.78 31.27 20.83 26.70 18.64 25.78 31.27 20.83 26.70 18.64 25.78 31.27 20.83 26.70 18.64 25.78 31.27 20.83 26.70 18.64 25.78 33.27 25.78 38.49 34.28 30.34 32.74 38.49 34.28 30.37 32.74 34.28 30.37 32.74 34.28 30.37 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 34.28 32.74 32.74 34.28 32.74 32.74 34.28 32.74 32.74 34.28 32.74 32.74 32.74 34.28 32.74 32.74 34.28 32.74 32.74 34.28 32.74 32.74 32.74 34.28 32.74 32.74 32.74 32.75 33.74 34.28 32.74 32.74 32.74 34.28 32.74 32.74 32.74 32.74 32.74 33.74 34.28 32.74 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 34.39 35	144.93 121.56 360.92 193.48 147.83 151.86 228 176.28 176.28 176.28 172.69 239.62 168.72 247.52 172.69 239.62 168.72 247.52 179.15 172.69 247.52 179.15 172.69 247.52 179.15 172.69 247.52 178.49 369.93 104.07 145.28 107.63 133.68 151.25 153.26 212.71 152.82 107.63 135.26 212.71 152.82 107.63 135.26 212.71 152.82 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 212.71 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.26 153.27 153.26 153.26 153.27 153.26 153.27 153.26 153.27 153.26 153.27 153.27 153.26 153.27 153.26 153.27 153.27 153.26 153.27 153.27 153.26 153.27 153.26 153.27 153.27 153.26 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.27 153.2	25,49 22,63 64,66 38,53 28,30 29,95 34,85 34,85 34,85 34,85 32,77 32,04 47,62 30,33 75,41 22,19 32,52 31,41 22,19 32,52 31,41 22,19 32,52 31,41 22,19 32,52 31,63 31,89 23,96 23,96 24,40 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 40,05 33,10 29,24 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26 20,26	67.50 60.93 174.99 105.08 75.76 82.74 200.38 94.40 101.79 85.38 95.12 83.12 85.38 95.12 83.12 85.38 95.12 83.76 136.21 74.58 87.76 136.21 130.58 87.76 136.21 130.58 85.07 131.95 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40.62 40	8.64 8.09 23.38 13.77 10.38 10.38 10.38 12.90 13.70 11.08 13.52 10.47 11.30 17.37 9.06 6.79 11.02 4.256 6.43 9.60 4.62 6.43 9.60 1.024 22.56 6.43 9.60 1.024 22.56 6.43 9.60 1.024 22.56 6.43 9.60 1.024 22.56 6.43 9.60 1.024 22.56 6.43 9.60 1.024 22.56 6.43 9.60 1.024 2.584 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.95 1.12 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.84 7.38 5.94 7.38 5.94 7.38 5.94 7.38 5.94 7.38	57.31 49.61 148.43 91.17 65.45 67.74 164.53 82.01 87.84 88.31 165.47 70.82 88.31 165.47 70.82 88.31 105.49 41.11 67.88 140.56 39.70 61.05 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 44.31 35.16 43.86 43.86 44.31 35.16 43.86 43.86 44.31 35.16 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 53.64 53.86 53.64 53.86 53.64 53.86 53.64 53.86 53.64 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.87 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 53.86 54 53.86 54 53.86 54 53.86 54 53.86 54 53.86 54 53.86 54 53.86 54 53.86 54 53.86 54 53.86 54 54 55.86 56 56 56 56 56 56 56 56 56 56 56 56 56	8.09 6.92 19.11 12.05 8.40 9.75 10.84 12.175 10.84 12.175 8.87 9.57 14.12 7.08 9.57 14.12 7.03 5.67 9.54 5.80 5.10 6.03 7.25 7.29 10.37 8.43 7.99 6.94	0.066 b.d.1 0.057 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.	5.53 4.36 5.13 5.21 4.68 4.07 4.32 3.90 4.07 4.32 3.90 4.07 4.32 3.90 4.07 4.26 3.90 4.26 3.71 4.26 3.27 4.35 3.371 4.26 3.371 5.39 4.37 4.10 5.04 4.18 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.88 4.31 3.31 3.32 4.32 4.32 4.32 3.32 4.32 4.32 4.33 3.31 3.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32	0.390 0.275 1.835 3.46 1.935 0.451 2.221 0.657 0.324 0.418 0.319 0.418 0.319 0.418 0.319 0.418 0.097 0.090 0.192 0.221 0.097 0.090 0.179 2.63 0.214 0.519 0.122 0.758 0.0570 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0470 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450 0.0450000000000	8.61 4.72 20.39 16.80 9.61 6.40 25.02 9.57 2.504 1.223 12.20 13.90 8.75 8.67 12.00 15.73 4.36 6.03 8.39 56.59 10.25 15.81 17.61 5.99 4.14 8.51 8.54 7.61 10.14 13.56 19.06 10.64 4.42 5.62 17.03

Annexe 9.3 : Tableau des analyses LA-ICP-MS en ppm des apatites 3^{ème} partie.

Point	Echantillon	CaO	P2O5	F	Na2O	SiO2	C1	Ce2O3	SO3	La2O3	Sr2O3	Y2O3	Total
5	LP-17-11 gr2	53,96	41,21	3,35	0,19	0,05	0,01	0,13	0,01	0,02	0,03	0,42	99,36
7	LP-17-11 gr4	53,87	41,08	3,27	0,28	0,03	0,02	0,30	0,01	0,09	0,01	0,39	99,36
8	LP-17-11 gr5	53,72	41,05	3,39	0,10	0,14	0,01	0,05	0,00	0,02	0,00	0,26	98,75
10	LP-17-11 gr6	54,83	41,77	3,64	0,10	0,02	0,01	0,10	0,00	0,00	0,03	0,17	100,67
11	LP-17-11 gr7	53,57	40,65	3,58	0,24	0,07	0,03	0,32	0,01	0,02	0,07	0,27	98,83
12	LP-17-11 gr7	54,37	41,03	3,63	0,22	0,04	0,03	0,23	0,03	0,07	0,02	0,25	99,91
13	LP-17-11 gr8	53,51	40,98	3,16	0,19	0,11	0,08	0,00	0,00	0,00	0,06	0,59	98,68
14	LP-17-11 gr9	53,41	41,49	3,33	0,19	0,13	0,00	0,19	0,00	0,01	0,03	0,28	99,06
15	LP-17-11 gr10	54,06	42,15	3,24	0,06	0,02	0,01	0,11	0,00	0,00	0,01	0,05	99,71
16	LP-17-11 gr11	54,20	41,98	3,38	0,02	0,07	0,03	0,04	0,02	0,01	0,00	0,14	99,90
17	LP-17-14 gr1	54,92	41,34	3,13	0,07	0,05	0,01	0,00	0,00	0,05	0,00	0,19	99,77
18	LP-17-14 gr3	54,32	41,80	2,97	0,09	0,00	0,03	0,05	0,00	0,02	0,00	0,15	99,42
19	LP-17-14 gr5	54,21	41,41	3,11	0,09	0,00	0,02	0,03	0,00	0,00	0,03	0,10	99,01
20	LP-17-14 gr7	54,48	41,90	3,29	0,01	0,06	0,02	0,07	0,00	0,00	0,00	0,21	100,06
21	LP-17-14 gr8	54,50	41,21	3,06	0,07	0,07	0,02	0,01	0,00	0,04	0,00	0,22	99,18
22	LP-17-14 gr10	55,12	41,85	3,01	0,06	0,01	0,01	0,04	0,04	0,03	0,02	0,18	100,37
23	LP-17-14 gr11	54,65	41,49	3,18	0,07	0,01	0,02	0,11	0,01	0,01	0,03	0,19	99,76
24	LP-17-14 gr15	53,81	41,36	3,02	0,06	0,02	0,01	0,09	0,00	0,02	0,00	0,16	98,55
25	LP-17-14 gr16	54,40	41,63	3,21	0,08	0,03	0,02	0,07	0,00	0,02	0,02	0,19	99,67
26	LP-17-14 gr19	54,86	41,81	3,15	0,12	0,08	0,01	0,08	0,00	0,00	0,05	0,21	100,38
27	LP-17-14 gr20	54,71	41,66	3,13	0,06	0,02	0,02	0,07	0,00	0,04	0,03	0,16	99,89
28	LP-17-14 gr22	54,93	41,40	3,30	0,05	0,03	0,02	0,07	0,00	0,02	0,02	0,16	100,00
29	LP-17-14 gr25	54,23	41,73	2,81	0,17	0,01	0,00	0,16	0,02	0,03	0,00	0,25	99,42
30	LP-17-14 gr26	54,26	41,42	2,90	0,12	0,04	0,01	0,07	0,02	0,03	0,01	0,23	99,11
31	LP-17-14 gr29	55,13	42,39	3,06	0,12	0,00	0,00	0,08	0,02	0,02	0,04	0,15	101,00
34	LP-17-14 gr34	54,01	41,52	2,97	0,12	0,02	0,01	0,06	0,00	0,06	0,04	0,17	98,98
35	LP-17-14 gr37	54,86	41,88	2,90	0,03	0,01	0,02	0,04	0,00	0,04	0,00	0,13	99,90
36	LP-17-14 gr38	54,65	41,80	2,71	0,15	0,03	0,02	0,06	0,01	0,00	0,01	0,21	99,66
38	LP-17-14 gr39	54,50	41,83	2,89	0,15	0,01	0,02	0,10	0,00	0,00	0,02	0,17	99,71
39	LP-17-14 gr42	54,41	41,40	3,10	0,05	0,02	0,01	0,06	0,00	0,01	0,02	0,15	99,23

Annexe 10.1 : Tableau des analyses microsonde électronique des apatites 1^{ère} partie.
Point	Echantillon	CaO	P2O5	F	Na2O	SiO2	C1	Ce2O3	SO3	La2O3	Sr2O3	Y2O3	Total
41	LP-17-20 gr5	53,89	41,61	2,98	0,10	0,00	0,00	0,06	0,03	0,02	0,01	0,19	98,90
42	LP-17-20 gr3	54,13	41,66	3,09	0,11	0,03	0,00	0,08	0,00	0,05	0,02	0,22	99,39
43	LP-17-20 gr6	54,18	41,91	3,21	0,13	0,03	0,01	0,05	0,00	0,01	0,06	0,15	99,75
44	LP-17-20 gr7	54,34	41,59	3,25	0,13	0,05	0,01	0,00	0,00	0,01	0,00	0,18	99,57
45	LP-17-20 gr9	54,55	41,88	3,10	0,07	0,05	0,00	0,08	0,01	0,00	0,01	0,21	99,94
48	LP-17-20 gr13	54,54	41,89	2,97	0,17	0,02	0,01	0,11	0,02	0,06	0,02	0,19	100,00
49	LP-17-20 gr15	54,37	41,42	2,92	0,09	0,03	0,00	0,08	0,00	0,01	0,02	0,22	99,16
50	LP-17-20 gr17	54,46	41,59	3,26	0,09	0,01	0,01	0,12	0,04	0,07	0,04	0,19	99,90
51	LP-17-20 gr18	54,58	41,28	3,07	0,09	0,04	0,00	0,07	0,00	0,01	0,02	0,20	99,36
52	LP-17-20 gr21	54,43	41,92	3,28	0,13	0,01	0,00	0,09	0,04	0,06	0,00	0,25	100,21
54	LP-17-20 gr24	54,72	41,82	3,47	0,09	0,02	0,01	0,05	0,00	0,00	0,01	0,18	100,37
55	LP-17-20 gr26	54,63	41,44	2,92	0,07	0,02	0,00	0,04	0,00	0,05	0,00	0,18	99,35
58	LP-17-20 gr35	54,62	41,04	3,04	0,12	0,08	0,01	0,10	0,01	0,00	0,01	0,26	99,29
59	LP-17-20 gr37	54,90	41,47	3,29	0,04	0,09	0,01	0,05	0,03	0,00	0,00	0,12	100,01
60	LP-17-20 gr38	54,90	41,04	3,07	0,09	0,02	0,01	0,11	0,04	0,00	0,00	0,23	99,52
61	GLG-2 gr2	55,98	42,46	2,99	0,00	0,02	0,04	0,02	0,03	0,04	0,01	0,00	101,60
62	GLG-2 gr3	55,32	41,61	3,31	0,05	0,02	0,03	0,04	0,01	0,00	0,04	0,00	100,42
63	GLG-2 gr6	55,47	41,31	3,17	0,00	0,00	0,03	0,01	0,01	0,00	0,02	0,00	100,00
64	GLG-2 gr7	55,62	42,04	3,18	0,00	0,00	0,04	0,01	0,03	0,00	0,01	0,01	100,94
65	GLG-2 gr10	55,54	41,93	2,97	0,01	0,02	0,05	0,00	0,00	0,00	0,01	0,01	100,53
66	GLG-2 gr11	55,85	42,35	3,22	0,03	0,00	0,04	0,03	0,00	0,00	0,00	0,00	101,54
67	GLG-2 gr12	55,66	42,36	3,38	0,00	0,02	0,06	0,01	0,01	0,00	0,02	0,01	101,53
69	GLG-2 gr18	55,54	41,87	3,08	0,03	0,03	0,03	0,03	0,00	0,03	0,03	0,01	100,66
71	GLG-2 gr21	55,37	41,37	3,12	0,00	0,00	0,03	0,01	0,02	0,00	0,01	0,00	99,92
72	GLG-2 gr22	55,88	42,06	3,12	0,01	0,00	0,04	0,01	0,00	0,01	0,01	0,00	101,16
73	GLG-2 gr23	55,79	42,25	3,35	0,01	0,01	0,05	0,00	0,02	0,00	0,03	0,00	101,50
75	GLG-2 gr30	56,30	41,85	3,09	0,10	0,02	0,02	0,03	0,00	0,04	0,03	0,03	101,50
76	GLG-2 gr32	55,89	42,24	3,40	0,00	0,01	0,02	0,03	0,00	0,02	0,00	0,00	101,61
77	GLG-2 gr33	55,73	42,32	3,17	0,00	0,00	0,04	0,00	0,04	0,00	0,00	0,00	101,30
78	GLG-2 gr36	55,74	41,91	3,06	0,02	0,03	0,02	0,01	0,00	0,01	0,01	0,00	100,80
81	GLG-2 gr43	55,35	41,98	2,99	0,02	0,02	0,04	0,00	0,00	0,00	0,00	0,00	100,40

Annexe 10.2 : Tableau des analyses microsonde électronique des apatites 2^{ème} partie.

Point	Echantillon	CaO	P2O5	F	Na2O	SiO2	C1	Ce2O3	SO3	La2O3	Sr2O3	Y2O3	Total
82	LP-17-10 gr1	54,42	41,47	3,12	0,06	0,04	0,00	0,09	0,00	0,01	0,02	0,12	99,35
83	LP-17-10 gr4	55,24	41,91	3,37	0,05	0,02	0,01	0,06	0,00	0,00	0,00	0,06	100,72
84	LP-17-10 gr6	55,20	41,61	2,96	0,07	0,02	0,01	0,08	0,04	0,00	0,06	0,08	100,13
85	LP-17-10 gr8	55,22	42,05	3,16	0,08	0,02	0,00	0,05	0,03	0,00	0,02	0,10	100,73
87	LP-17-10 gr15	55,13	42,08	3,17	0,05	0,02	0,00	0,11	0,00	0,03	0,04	0,08	100,69
88	LP-17-10 gr16	54,63	41,13	3,04	0,10	0,09	0,00	0,13	0,02	0,07	0,02	0,17	99,42
91	LP-17-10 gr19	55,80	42,16	3,10	0,12	0,00	0,01	0,09	0,00	0,04	0,01	0,08	101,42
92	LP-17-10 gr22	55,84	42,26	3,19	0,06	0,04	0,01	0,08	0,00	0,02	0,01	0,11	101,61
93	LP-17-10 gr24	54,97	41,68	2,94	0,08	0,02	0,00	0,08	0,02	0,05	0,03	0,10	99,97
94	LP-17-10 gr25	54,84	41,47	3,30	0,06	0,01	0,00	0,07	0,00	0,02	0,00	0,08	99,86
96	LP-17-10 gr32	55,87	42,00	3,11	0,08	0,00	0,01	0,06	0,00	0,00	0,02	0,10	101,24
97	LP-17-10 gr33	55,43	42,06	2,94	0,12	0,02	0,00	0,06	0,02	0,00	0,02	0,12	100,78
98	LP-17-10 gr34	54,89	41,67	3,08	0,02	0,02	0,00	0,07	0,00	0,01	0,02	0,11	99,89
99	LP-17-10 gr35	55,26	41,58	3,26	0,04	0,04	0,01	0,06	0,00	0,01	0,00	0,08	100,35
100	LP-17-10 gr36	55,22	41,69	3,08	0,09	0,02	0,00	0,09	0,00	0,01	0,00	0,12	100,32
101	Swasa-89 Ap-1	55,02	41,70	3,08	0,08	0,01	0,00	0,08	0,01	0,03	0,00	0,07	100,09
102	Swasa-89 Ap-5b	55,07	41,70	3,41	0,09	0,08	0,02	0,10	0,00	0,02	0,04	0,08	100,60
103	Swasa-89 Ap-5c	54,99	42,24	3,38	0,08	0,08	0,00	0,06	0,00	0,05	0,04	0,07	100,99
108	Swasa-89 Ap-4	54,24	41,39	3,39	0,09	0,19	0,00	0,01	0,03	0,00	0,00	0,06	99,40
109	Swasa-89 Ap-2	55,17	42,06	3,26	0,07	0,05	0,02	0,04	0,02	0,04	0,00	0,09	100,82
112	Swasa-89 Ap-11	55,13	42,55	3,37	0,05	0,05	0,00	0,03	0,00	0,02	0,02	0,06	101,28
113	Swasa-89 Ap-11	55,25	41,65	3,38	0,04	0,04	0,00	0,08	0,01	0,03	0,02	0,08	100,58
114	Swasa-89 Ap-12c	55,42	41,98	3,15	0,04	0,12	0,00	0,10	0,01	0,03	0,03	0,08	100,97
115	Swasa-89 Ap-12h	55,33	41,54	3,05	0,06	0,06	0,02	0,05	0,00	0,01	0,02	0,08	100,21
116	Swasa-89 Ap-13	55,45	41,41	3,52	0,08	0,05	0,00	0,08	0,00	0,00	0,01	0,08	100,67
117	Swasa-89 Ap-14d	54,75	42,36	3,15	0,08	0,06	0,00	0,07	0,02	0,02	0,01	0,10	100,62
121	Swasa-89 Apmz1	0,02	0,00	0,00	0,24	51,17	0,00	0,03	0,00	0,01	0,00	0,00	51,46

Annexe 10.3 : Tableau des analyses microsonde électronique des apatites 3^{ème} partie.

Point	Echantillon	CaO	P2O5	F	Na2O	SiO2	C1	Ce2O3	SO3	La2O3	Sr2O3	Y2O3	Total
126	Swasa-91 Ap-2	55,18	41,99	3,39	0,05	0,05	0,01	0,09	0,02	0,00	0,00	0,11	100,89
127	Swasa-91 Ap-3	54,64	41,94	3,67	0,08	0,04	0,01	0,04	0,00	0,01	0,00	0,12	100,55
128	Swasa-91 Ap-4h	55,04	41,62	3,46	0,02	0,05	0,00	0,02	0,01	0,01	0,02	0,13	100,36
130	Swasa-91 Ap-4d	55,51	41,20	3,34	0,08	0,08	0,01	0,06	0,01	0,03	0,02	0,16	100,51
131	Swasa-91 Ap-5	54,92	42,17	3,49	0,07	0,04	0,00	0,06	0,00	0,05	0,00	0,16	100,97
133	Swasa-91 Ap-7b	54,23	41,89	3,38	0,04	0,02	0,01	0,05	0,00	0,00	0,02	0,09	99,73
134	Swasa-91 Ap-7c	54,98	41,68	3,09	0,07	0,05	0,00	0,03	0,00	0,02	0,02	0,15	100,10
135	Swasa-91 Ap-8	55,24	41,73	3,42	0,14	0,04	0,02	0,06	0,02	0,02	0,01	0,11	100,82
137	Swasa-91 Ap-9g	55,75	41,75	3,48	0,03	0,04	0,02	0,07	0,00	0,01	0,01	0,15	101,31
138	Swasa-91 Ap-10	54,87	41,02	3,31	0,10	0,15	0,01	0,09	0,00	0,04	0,02	0,23	99,84
139	Swasa-91 Ap-11	55,40	42,06	3,49	0,08	0,04	0,02	0,02	0,01	0,02	0,03	0,14	101,31
141	Swasa-91 Ap-12	55,10	42,23	3,37	0,06	0,04	0,00	0,09	0,00	0,01	0,02	0,14	101,06
142	Swasa-91 Ap-20	54,60	42,00	3,11	0,03	0,01	0,01	0,07	0,02	0,02	0,02	0,14	100,03
143	Swasa-91 Ap-19	54,72	41,66	3,58	0,05	0,01	0,00	0,09	0,00	0,02	0,02	0,13	100,27
144	Swasa-91 Ap-18	55,06	42,74	3,54	0,06	0,11	0,02	0,08	0,01	0,01	0,01	0,18	101,80
145	Swasa-91 Ap-17	55,37	41,23	3,41	0,09	0,06	0,01	0,11	0,01	0,01	0,03	0,12	100,45
146	Swasa-91 Ap-16	54,68	41,79	3,31	0,13	0,11	0,02	0,08	0,00	0,02	0,00	0,13	100,27
147	Swasa-91 Ap-15	54,28	41,80	3,45	0,03	0,10	0,01	0,03	0,01	0,04	0,03	0,18	99,98
153	Swasa-91 Ap-3g	54,70	41,10	3,23	0,03	0,11	0,00	0,10	0,01	0,03	0,02	0,16	99,50
154	Swasa-95-gr2	54,87	42,13	3,05	0,01	0,02	0,02	0,01	0,00	0,02	0,01	0,00	100,14

Annexe 10.4 : Tableau des analyses microsonde électronique des apatites 4^{ème} partie.

Point	Echantillon	CaO	P2O5	F	Na2O	SiO2	C1	Ce2O3	SO3	La2O3	Sr2O3	Y2O3	Total
210	Swasa-96 Ap-1	54,98	41,57	3,46	0,02	0,06	0,00	0,07	0,03	0,02	0,12	0,10	100,42
213	Swasa-96 Ap-2	54,47	41,65	3,47	0,07	0,11	0,00	0,03	0,02	0,00	0,09	0,16	100,07
214	Swasa-96 Ap-2	54,43	41,45	3,90	0,06	0,14	0,00	0,04	0,00	0,02	0,05	0,10	100,20
217	Swasa-96 Ap-4	55,34	41,62	3,81	0,07	0,06	0,01	0,06	0,03	0,00	0,12	0,09	101,22
218	Swasa-96 Ap-5	55,06	41,71	3,89	0,03	0,22	0,01	0,14	0,00	0,03	0,08	0,20	101,38
219	Swasa-96 Ap-5	55,21	41,51	3,82	0,07	0,03	0,00	0,06	0,02	0,01	0,07	0,09	100,91
221	Swasa-96 Ap-6	54,52	40,97	3,58	0,07	0,02	0,01	0,09	0,02	0,05	0,08	0,09	99,49
222	Swasa-96 Ap-6	54,48	41,49	3,45	0,07	0,06	0,00	0,06	0,00	0,02	0,07	0,09	99,79
224	Swasa-96 Ap-7	54,59	41,34	3,58	0,00	0,11	0,01	0,04	0,00	0,00	0,09	0,13	99,90
228	Swasa-96 Ap-7	53,94	41,15	3,73	0,01	0,31	0,01	0,10	0,00	0,00	0,08	0,31	99,63
229	Swasa-96 Ap-9	55,09	41,61	3,48	0,03	0,13	0,00	0,06	0,00	0,00	0,07	0,16	100,61
230	Swasa-96 Ap-10	54,95	41,32	3,86	0,02	0,07	0,01	0,03	0,00	0,03	0,06	0,09	100,44
231	Swasa-96 Ap-10	55,02	41,88	3,82	0,02	0,06	0,00	0,00	0,00	0,00	0,08	0,08	100,96
232	Swasa-96 Ap-10	54,34	41,68	3,62	0,08	0,06	0,01	0,03	0,00	0,01	0,12	0,13	100,08
233	Swasa-96 Ap-11	54,81	41,73	3,26	0,10	0,03	0,01	0,09	0,00	0,01	0,09	0,15	100,28
237	Swasa-96 Ap-12	54,40	41,64	3,56	0,01	0,16	0,00	0,00	0,02	0,00	0,09	0,20	100,09
238	Swasa-96 Ap-12	55,20	41,84	3,84	0,04	0,07	0,00	0,03	0,01	0,00	0,08	0,11	101,22
239	Swasa-96 Ap-13	55,16	41,82	3,81	0,03	0,03	0,03	0,00	0,03	0,02	0,07	0,10	101,10
240	Swasa-96 Ap-13	55,44	41,58	3,48	0,06	0,09	0,01	0,05	0,00	0,00	0,06	0,16	100,92
242	Swasa-96 Ap-14	54,92	41,64	3,37	0,04	0,07	0,00	0,10	0,00	0,04	0,10	0,10	100,38
244	Swasa-96 Ap-15	55,23	41,88	3,70	0,05	0,06	0,00	0,06	0,04	0,01	0,09	0,15	101,25
245	Swasa-96 Ap-16	54,75	42,09	3,73	0,06	0,05	0,00	0,06	0,00	0,02	0,07	0,08	100,91
249	Swasa-96 Ap-16	54,02	42,17	4,05	0,05	0,21	0,00	0,05	0,00	0,04	0,07	0,20	100,87
261	Swasa-96 Ap-21	55,08	41,73	3,42	0,03	0,08	0,00	0,06	0,04	0,00	0,07	0,15	100,66
262	Swasa-96 Ap-21	55,15	41,94	3,29	0,06	0,07	0,01	0,02	0,01	0,04	0,06	0,10	100,75
265	Swasa-96 Ap-23	54,83	41,86	3,60	0,08	0,07	0,01	0,04	0,00	0,03	0,08	0,11	100,70
266	Swasa-96 Ap-23	55,16	41,77	3,49	0,01	0,04	0,01	0,01	0,00	0,02	0,09	0,10	100,71
267	Swasa-96 Ap-24	55,38	42,03	3,74	0,03	0,00	0,00	0,01	0,02	0,05	0,07	0,09	101,42
270	Swasa-96 Ap-25	55,50	41,81	3,24	0,01	0,12	0,00	0,07	0,01	0,00	0,09	0,14	100,99
273	Swasa-96 Ap-27	55,28	41,62	3,34	0,02	0,09	0,01	0,00	0,00	0,00	0,07	0,18	100,61
274	Swasa-96 Ap-26	54,66	41,66	3,41	0,07	0,14	0,00	0,03	0,02	0,00	0,09	0,20	100,28
276	Swasa-96 Ap-26	54,55	41,98	3,47	0,07	0,04	0,00	0,03	0,00	0,00	0,07	0,13	100,33
280	Swasa-96 Ap-29	55,24	41,83	3,55	0,06	0,08	0,01	0,07	0,01	0,03	0,09	0,15	101,11
287	Swasa-96 Ap-30	55,57	42,01	3,57	0,01	0,08	0,01	0,01	0,02	0,00	0,09	0,11	101,48

Annexe 10.5 : Tableau des analyses microsonde électronique des apatites 5^{ème} partie.

Point	Echantillon	CaO	P2O5	F	Na2O	SiO2	C1	Ce2O3	SO3	La2O3	Sr2O3	Y2O3	Total
301	Swasa-98 Ap-1	54,70	41,83	3,31	0,06	0,10	0,01	0,02	0,00	0,03	0,08	0,09	100,23
302	Swasa-98 Ap-1	55,30	42,20	3,37	0,06	0,03	0,01	0,01	0,08	0,05	0,07	0,06	101,22
311	Swasa-98 Ap-2	55,22	42,03	3,60	0,01	0,38	0,02	0,10	0,04	0,04	0,06	0,30	101,80
312	Swasa-98 Ap-3	55,44	42,22	3,57	0,06	0,11	0,01	0,00	0,05	0,01	0,07	0,11	101,64
313	Swasa-98 Ap-3	54,50	42,06	3,57	0,02	0,08	0,01	0,01	0,05	0,01	0,06	0,10	100,47
315	Swasa-98 Ap-4	55,68	42,34	3,47	0,00	0,07	0,01	0,00	0,02	0,03	0,08	0,11	101,82
316	Swasa-98 Ap-4	54,93	41,85	3,58	0,00	0,34	0,01	0,00	0,04	0,00	0,10	0,31	101,15
317	Swasa-98 Ap-4	55,38	41,79	3,51	0,03	0,25	0,01	0,00	0,03	0,00	0,04	0,31	101,36
320	Swasa-98 Ap-6	55,37	41,58	3,67	0,03	0,06	0,01	0,00	0,00	0,00	0,07	0,10	100,89
321	Swasa-98 Ap-6	54,24	41,52	3,58	0,08	0,35	0,02	0,02	0,00	0,04	0,06	0,35	100,25
322	Swasa-98 Ap-7	55,76	42,27	3,42	0,07	0,06	0,01	0,00	0,05	0,04	0,07	0,10	101,85
325	Swasa-98 Ap-8	55,07	41,73	3,56	0,03	0,20	0,01	0,07	0,02	0,01	0,08	0,20	100,98
326	Swasa-98 Ap-9	55,18	42,04	3,31	0,00	0,11	0,02	0,04	0,08	0,00	0,06	0,08	100,93
328	Swasa-98 Ap-10	54,97	41,69	3,12	0,03	0,07	0,01	0,03	0,00	0,00	0,10	0,09	100,12
329	Swasa-98 Ap-11	55,19	41,44	3,37	0,03	0,02	0,01	0,03	0,08	0,00	0,06	0,08	100,32
331	Swasa-98 Ap-12	55,16	41,28	3,31	0,00	0,20	0,01	0,00	0,06	0,00	0,05	0,12	100,19
335	Swasa-98 Ap-13	56,19	42,53	3,79	0,02	0,03	0,02	0,01	0,06	0,00	0,08	0,02	102,76
337	Swasa-98 Ap-14	56,23	42,12	3,43	0,02	0,12	0,02	0,02	0,03	0,01	0,03	0,10	102,13
338	Swasa-98 Ap-14	56,34	42,13	3,50	0,04	0,11	0,01	0,00	0,05	0,01	0,10	0,07	102,35
339	Swasa-98 Ap-15	56,01	42,19	3,45	0,00	0,05	0,01	0,02	0,05	0,01	0,11	0,05	101,92
341	Swasa-98 Ap-15	55,97	42,59	3,42	0,04	0,07	0,00	0,01	0,07	0,00	0,09	0,08	102,34
344	Swasa-98 Ap-16	55,76	42,50	3,51	0,00	0,06	0,02	0,04	0,02	0,00	0,08	0,02	102,00
346	Swasa-98 Ap-17	55,94	42,48	3,54	0,01	0,06	0,00	0,01	0,06	0,02	0,11	0,08	102,29
347	Swasa-98 Ap-17	56,09	42,80	3,61	0,04	0,06	0,01	0,07	0,03	0,00	0,10	0,07	102,87
348	Swasa-98 Ap-18	56,10	42,26	3,59	0,06	0,08	0,02	0,06	0,00	0,00	0,07	0,08	102,32
350	Swasa-98 Ap-19	54,93	41,88	3,46	0,06	0,06	0,02	0,00	0,04	0,03	0,05	0,06	100,59
356	Swasa-98 Ap-21	55,68	41,67	3,34	0,06	0,06	0,01	0,04	0,04	0,00	0,09	0,09	101,06
360	Swasa-98 Ap-22	55,55	41,81	3,61	0,01	0,11	0,00	0,01	0,02	0,02	0,09	0,09	101,33
362	Swasa-98 Ap-22	56,15	42,15	3,46	0,02	0,11	0,02	0,04	0,05	0,02	0,09	0,10	102,21
363	Swasa-98 Ap-23	56,30	42,07	3,43	0,04	0,20	0,02	0,02	0,06	0,01	0,09	0,18	102,41
364	Swasa-98 Ap-23	54,10	41,01	3,35	0,07	1,12	0,01	0,02	0,07	0,04	0,08	0,05	99,91
365	Swasa-98 Ap-24	56,00	41,99	3,65	0,00	0,15	0,01	0,07	0,02	0,02	0,11	0,10	102,12
366	Swasa-98 Ap-24	56,60	42,32	3,52	0,02	0,07	0,02	0,00	0,00	0,00	0,11	0,04	102,70
368	Swasa-98 Ap-25	55,78	42,60	3,36	0,00	0,05	0,02	0,04	0,07	0,00	0,10	0,04	102,06
378	Swasa-98 Ap-30	55,41	42,14	3,58	0,02	0,07	0,01	0,03	0,05	0,04	0,09	0,10	101,53

Annexe 10.6 : Tableau des analyses microsonde électronique des apatites 6^{ème} partie.

Point	Comment	CaO	P2O5	F	Na2O	SiO2	C1	Ce2O3	SO3	La2O3	Sr2O3	Y2O3	ThO2	Total
400	Swasa-89mnz1 10µm	50,53	38,50	3,66	0,00	1,14	0,01	0,91	0,00	0,43	0,04	0,00	1,94	97,16
401	Swasa-89-mnz1 beam 10µm	51,22	39,52	3,58	0,00	0,61	0,04	0,68	0,01	0,44	0,05	0,00	1,18	97,32
402	Swasa-89-mnz1 10µm	52,92	40,18	3,40	0,01	0,28	0,01	0,55	0,00	0,47	0,06	0,00	0,59	98,47
403	Swasa-89-mnz2 10µm	52,20	40,63	3,19	0,02	0,29	0,02	0,41	0,00	0,34	0,06	0,00	0,35	97,52
404	Swasa-89-mnz2 10µm	51,10	38,44	3,19	0,00	1,34	0,03	0,56	0,03	0,50	0,03	0,00	0,41	95,63
406	Swasa-89-mnz7 10µm	53,71	41,81	5,04	0,09	0,07	0,00	0,40	0,00	0,33	0,02	0,06	0,26	101,78
407	Swasa-89-mnz7 10µm	54,35	42,03	3,39	0,05	0,12	0,00	0,07	0,01	0,03	0,04	0,08	0,06	100,22
408	Swasa-89-mnz7 10µm	54,10	41,96	4,55	0,05	0,13	0,01	0,10	0,03	0,04	0,04	0,05	0,00	101,05
409	Swasa-89-mnz17 5µm	52,20	38,17	4,10	0,04	1,84	0,00	1,55	0,01	0,56	0,00	0,05	0,15	98,67
410	Swasa-89-mnz17 10µm	51,83	40,21	3,67	0,06	0,15	0,01	1,11	0,05	0,40	0,06	0,00	0,80	98,35
411	Swasa-89-mnz17 10µm	53,39	40,08	3,24	0,00	0,28	0,03	0,46	0,03	0,35	0,07	0,00	0,82	98,73
413	Swasa-91-mnz2 10µm	52,74	39,86	3,53	0,01	0,71	0,01	0,44	0,02	0,23	0,03	0,01	0,20	97,78
414	Swasa-91-mnz2 10µm	51,99	41,10	3,81	0,03	0,17	0,00	0,38	0,01	0,20	0,02	0,08	0,23	98,00
415	Swasa-91-mnz4 10µm	52,31	39,43	3,92	0,02	0,79	0,03	0,70	0,01	0,37	0,04	0,00	0,80	98,42
416	Swasa-91-mnz4 10µm	52,82	39,97	4,30	0,11	0,88	0,01	0,36	0,03	0,24	0,14	0,11	0,24	99,20

Annexe 11 : Tableau des analyses microsonde électronique des apatites secondaires dans les couronnes de destabilisation des monazites.

Point	Commentaire	CaO	TiO2	La2O3	Ce2O3	FeO	SiO2	A12O3	MgO	ThO2	Y2O3	MnO	Pr2O3	Nd2O3	Sm2O3	Gd2O3	Total
1	Swasa-89-mnz7	11,2893	0,0363	8,126	12,251	11,2064	32,9835	16,1403	0,2996	0,2087	0	0,2274	0,9428	3,0442	0,1038	0	96,8592
2	Swasa-89-mnz7	13,7667	0,0494	5,1375	9,056	9,5174	34,6959	18,8444	0,2544	0,2907	0,0203	0,2228	0,7701	2,6774	0,199	0,0389	95,5409
3	Swasa-91-mnz6	10,6008	0,1303	7,5098	12,3281	12,5079	30,9435	13,5983	0,1722	0,3246	0,0922	0,4264	0,9488	3,1444	0,2137	0,0507	92,9915
4	Swasa-91-mnz6	10,7539	0,1312	6,893	11,9871	12,3934	33,8102	13,1989	0,1722	0,3795	0,0617	0,3046	1,0952	3,4618	0,214	0,1019	94,9586
5	Swasa-91-mnz6	12,4367	0,0991	4,5433	9,9357	10,289	34,9103	17,0897	0,1308	0,2572	0,0308	0,226	0,9205	3,7602	0,431	0,1479	95,2081
6	Swasa-91-mnz6	9,8642	0,1943	6,6764	12,0674	14,1894	31,6716	13,7645	0,2003	0,2173	0,098	0,3865	1,1068	3,8031	0,2501	0,1589	94,6488
7	Swasa-91-mnz6	9,5499	0,3216	6,1784	11,441	14,0632	31,8656	13,9804	0,1989	0,2019	0,1437	0,4071	1,0793	3,7078	0,3496	0,0958	93,5842

Annexe 12 : Tableau des analyses microsonde électronique des allanites dans les couronnes de destabilisation des monazites.

Echantillon	Analyse	Ca43	Ca44	Sr88	La139	Ce140	Pr141	Nd146	Sm147	Eu153	Gd157	Tb159	Dy163	Ho165	166	Tm169	Yb172	Lu175	Hf178	Pb208	Th232	U238
	all 3	45248,05	46026,73	664,94	42430,58	47881,06	6437,46	18222,14	1552,31	78,48	413,18	18,77	48,29	5,35	11,46	1,05	5,62	1,1	79,19	1949,05	3836,78	709,14
Swasa-89	all 4	105161,2	80689,73	466,51	31188,31	47728,18	4013,39	10923,49	771,28	28,48	198,79	9,64	19,78	2,55	4,8	1,33	6,17	0,48	29,27	3191,41	1151,94	19,52
	all 5	122262,95	98414,31	1012,66	25924,63	42097,59	3088,98	8413,9	516,56	10,86	152,21	5,72	20,61	2,15	5,45	1,42	4,34	1,07	35,97	3559,04	1932,77	55,66
	all 6	109410,83	68253,93	1153,91	35874,67	64703,78	6529,37	18407,66	2116,82	78,95	693,47	37,33	100,69	10,36	22,12	2,47	5,8	1,22	76,64	7424,95	1390,89	639,36
	all 7	134316,52	70469,51	759,12	13694,85	24943,39	2173,91	7287,93	777,35	28,56	312,49	14,09	45,8	6,26	21,29	4,95	14,78	2,87	12,89	1497,93	304,75	85,68
Swasa-91	all 8	113641,6	76830,34	336,56	14682,41	21437,27	2269,84	7578,43	813,99	31,94	290,8	22,94	75,41	9,38	17,6	2,04	6,34	1,64	42,39	2559,31	1290,98	915,01
	all 9	133719,45	75758,3	1497,92	35289,77	58117,98	6012,63	18226,35	2217,25	89,6	816,71	42,82	106,78	12,11	34,59	3,92	9,62	1,94	37,09	3974,45	1049,52	354,51
	all 10	129220,45	88908,8	1272,9	19271,31	36964,43	4386,52	13756,53	2398,67	150,37	1407,68	104,27	325,58	30,28	31,12	2,73	6,11	3,28	14,71	3854,44	1077,1	178,37

Annexe 13 : Tableau des analyses LA-ICP-MS des allanites dans les couronnes de destabilisation des monazites en ppm.

Point	Commentaire	P2O5	SiO2	CaO	Y2O3	La2O3	Ce2O3	Pr2O3	Nd2O3	Sm2O3	Gd2O3	UO2	PbO	ThO2	Total
1	Swasa-89 mnz10	29,3736	0,6155	1,4252	0,3542	17,5664	29,8113	2,6133	8,2607	0,8647	0,4748	0,5574	1,1313	6,915	99,9633
2	Swasa-89 mnz10	28,501	0,9505	1,1522	0,1983	16,9958	30,6024	2,6342	8,7465	0,8408	0,5572	0,1948	0,9807	7,0737	99,4281
3	Swasa-89 mnz9	28,0234	0,9478	1,0657	0,0648	19,7147	30,3646	2,5541	7,6056	0,4337	0,161	0,1786	0,8578	6,6333	98,6051
4	Swasa-89 mnz9	28,8376	0,7331	1,4235	0,4087	17,2239	29,6558	2,7713	7,6749	0,6855	0,4965	0,4222	1,1178	7,2623	98,7132
5	Swasa-89 mnz5	28,6207	0,8511	1,7052	0,4091	16,785	29,0427	2,5722	7,8601	0,8036	0,4353	0,4032	1,1111	8,066	98,6654
6	Swasa-89 mnz5	28,4941	0,9008	1,5596	0,4055	16,8138	29,3	2,79	7,8112	0,7983	0,5913	0,6085	1,2159	8,0106	99,2996
7	Swasa-89 mnz2	28,7621	0,8563	1,3191	0,4117	17,1719	29,8105	2,6614	8,0037	0,7661	0,4587	0,5828	1,0805	7,202	99,0868
8	Swasa-89 mnz2	28,9692	0,6792	1,5528	0,3519	17,4119	29,5827	2,5104	7,7123	0,4897	0,4624	0,4885	1,0883	7,0221	98,3212
9	Swasa-89 mnz2	28,9502	0,6411	1,5499	0,4326	16,9449	29,5584	2,6789	8,024	0,8119	0,4327	0,5726	1,1638	7,3125	99,0736
10	Swasa-89 mzn2b	28,3871	1,0979	1,4591	0,3941	17,42	29,7514	2,6808	8,0693	1,0437	0,4413	0,5293	1,0686	6,92	99,2625
11	Swasa-89 mnz2b	28,1646	1,2009	0,8063	0,4921	17,6858	30,2507	2,4185	8,611	1,1832	0,7485	0,1856	0,9331	6,1784	98,8586
12	Swasa-89 mnz1	28,8743	0,7118	1,3983	0,251	17,1063	29,985	2,3449	8,8212	0,937	0,3683	0,3369	0,9519	6,5851	98,6718
13	Swasa-89 mnz1	29,1173	0,6252	1,6393	0,3119	17,2013	29,1888	2,0513	8,0468	0,8599	0,642	0,3395	1,0743	7,2594	98,3571
14	Swasa-89 mnz4	29,4888	0,6067	1,4692	0,4024	17,2758	29,4981	2,6881	8,0357	0,452	0,2401	0,4816	1,0908	6,9171	98,6464
15	Swasa-89 mnz4	28,3689	0,7805	1,9118	0,3698	16,547	28,5168	2,6247	8,5674	1,0065	0,5356	0,4651	1,0886	7,3676	98,1503
16	Swasa-89 mnz3	28,7951	0,7869	1,2504	0,3135	17,0674	29,5358	2,5264	8,2853	0,7887	0,4762	0,3144	1,039	7,1568	98,336
17	Swasa-89 mnz3	29,2747	0,6071	1,5233	0,3453	17,0476	29,5802	2,6193	7,8031	0,6119	0,371	0,3833	1,0876	7,3041	98,5586
18	Swasa-89 mnz6	28,9851	0,7008	1,3643	0,3131	17,3894	29,5116	2,8012	8,3807	0,8424	0,6807	0,3881	0,9587	6,4848	98,8008
19	Swasa-89 mnz6	28,9403	0,6215	1,4389	0,3759	17,4682	30,0086	2,7044	7,9307	0,8625	0,537	0,4769	1,0275	6,83	99,2225
20	Swasa-89 mnz7	29,0651	0,851	0,9725	0,1715	16,7758	30,4153	2,8645	9,1714	1,1088	0,5504	0,1426	0,8517	5,9622	98,9028
21	Swasa-89 mnz7	29,0186	0,6689	1,2729	0,281	17,1071	30,0183	2,5314	8,2035	0,9879	0,5054	0,442	1,0452	6,6119	98,6942
22	Swasa-89 mnz8	28,8522	0,7246	1,5593	0,3892	17,0883	29,2852	2,6531	7,8498	0,7984	0,5364	0,4469	1,1804	7,4512	98,8151
23	Swasa-89 mnz8	28.6518	0.8457	0.7417	0.072	19.8636	31.6163	2.5146	7.9257	0.7831	0.1604	0.0723	0.7148	5.1726	99.1346
24	Swasa-91 mnz5b	28,4702	0,991	1,4224	0,7431	15,9285	28,8392	2,7065	8,1877	0,9465	0,5973	0,594	1,1694	7,7902	98,386
25	Swasa-91 mnz5b	28,4767	0,9004	1,3495	0,7581	16,3316	29,1494	2,385	8,6807	1,0003	0,562	0,545	1,29	7,9237	99,3522
26	Swasa-91 mnz5	26,3953	2,3988	1,4802	0,5152	13,6276	24,9975	2,5784	8,5963	1,064	0,5971	0,3688	1,874	13,8864	98,3794
27	Swasa-91 mnz5	29,1184	0,8025	1,2161	0,9021	16,5956	29,253	2,6094	8,3729	0,9424	0,8544	0,3828	1,107	7,1475	99,3041
28	Swasa-91 mnz5	28,7786	0,9268	1,3621	0,7636	16,0716	29,1881	2,6805	8,5828	1,0706	0,7271	0,4965	1,1666	7,8851	99,6999
29	Swasa-91 mnz5	29,267	0,5201	0,7429	0,5248	18,1584	32,019	2,6504	8,5198	0,4941	0,5816	0,2532	0,6107	4,1238	98,4658
30	Swasa-91 mnz6	29,0799	1,0092	1,1885	0,7906	16,6758	29,3772	2,4636	8,2882	0,9931	0,5376	0,5384	0,9811	7,0993	99,0225
31	Swasa-91 mnz6	28,1199	1,3791	1,4758	0,0998	17,833	30,1616	2,2129	7,1471	0,5369	0,4812	0,1737	0,9055	7,7419	98,2683
32	Swasa-91 mnz4	28,5521	1,0199	1,4049	0,7315	16,2541	29,231	2,1094	8,192	0,7617	0,646	0,5794	1,23	8,0273	98,7393
33	Swasa-91 mnz4	28,3794	1,0428	1,2607	0,7555	16,7316	29,3319	2,7727	8,5422	0,8301	0,6975	0,5167	1,1679	7,8075	99,8365
34	Swasa-91 mnz4	28,8471	0,9075	1,3466	0,8118	16,917	29,0408	2,8289	8,0005	0,9384	0,533	0,4886	1,1956	7,2368	99,0927
35	Swasa-91 mnz4	27,7796	1,3547	1,7603	0,6676	15,7154	28,3454	2,3153	7,895	0,9945	0,458	0,6256	1,207	9,4206	98,5391
36	Swasa-91 mnz3	28,926	0,8465	1,4505	0,8619	15,7441	28,4203	3,1779	8,3332	0,9322	0,6244	0,5318	1,2828	7,5225	98,6542
37	Swasa-91 mnz3	28,8128	0,9155	1,3194	0,8184	16,1087	28,7645	2,4246	8,0912	1,0696	0,5161	0,5904	1,1668	7,2448	97,8428
38	Swasa-91 mnz2	28,2783	1,2441	1,0202	0,3775	16,3657	29,5718	2,7629	8,4225	1,3037	0,5631	0,2171	1,0573	7,7363	98,9205
39	Swasa-91 mnz2	28,1493	1,1874	0,7933	0,1292	18,768	30,6936	2,7477	7,846	0,3693	0	0,2284	0,91	6,7901	98,6123
40	Swasa-91 mnz2	28,3515	1,0606	1,0565	0,4025	16,1449	30,1486	3,095	8,4501	1,1895	0,4429	0,2293	1,0246	6,9779	98,5739
41	Swasa-91 mnz2	28,4766	1,0012	1,4927	0,6705	16,2235	29,3069	2,9967	8,0399	0,8435	0,7131	0,4661	1,1628	7,771	99,1644
42	Swasa-91 mnz2	27,109	1,7468	3,914	0,6048	15,3243	27,2128	2,5737	7,717	0,8536	0,39	0,57	0,9995	8,6504	97,6659
43	Swasa-91 mnz1	28,4544	1,0563	1,0708	0,4728	16,2282	29,9719	2,9623	9,0901	1,1654	0,8084	0,1508	0,9911	6,9046	99,3272
44	Swasa-91 mnz1	28,3955	1,095	1,2551	0,5626	15,4684	29,2347	2,742	9,025	1,162	0,2685	0,3365	1,1432	7,6635	98,3521

Annexe 14 : Tableau des analyses microsonde électronique des monazites.

RÉSUMÉ

Les TTGs (Tonalite – Trondhjémite – Granodiorite) sont des roches qui se sont formés entre 4.0 et 2.5 Ga dont la mise en place et le contexte géodynamique sont encore discutées. Dans cette étude basée sur un affleurement dans le craton du Kaapvaal, nous avons effectués une étude pétrochronologique détaillée sur des gneiss gris. Pour cela, nous avons effectués des analyses in-situ sur les phases accessoires en présences. Les analyses U-Th-Pb sur zircon et monazite montrent une mise en place des différents gneiss entre 2.95 et 2.85 Ga et prouvent que les monazites sont primaires. L'étude pétrologique des couronnes de déstabilisation autour des monazites en apatite + thorite + allanite + épidote révèle un épisode de métamorphisme en faciès amphibolitique. Les analyses en éléments en traces des apatites ont permis de montrer que leurs caractéristiques chimiques dépendent du type de magma (métalumineux vs peralumineux), de la présence de monazite et sont sensibles à la profondeur de fusion de la source des TTGs.

Mots clés : Archéen ; TTGs ; datation U-Th-Pb ; Métamorphisme ; Monazite ; Apatite

ABSTRACT

TTGs (Tonalite - Trondhjemite - Granodiorite) are granitoids which formed between 4.0 and 2.5 Ga. The geodynamic context in which they appear are still highly debated. In this contribution, we performed a detailed petrochronological study on greys gneisses from an outcrop in the Kaapvaal craton (South Africa). We carried out in-situ analyses on the different accessory phases observed in thin section. U-Th-Pb analyses on zircon and monazite constrain the age of the different gneisses between 2.95 and 2.85 Ga and prove that the monazite is primary. The petrological study of the corona around monazites made up of apatite + thorite + allanite + epidote reveals a metamorphic episode in amphibolitic facies. Finally, we show that trace element analyses of apatites have chemical characteristics related to the type of magma (metaluminous vs. peraluminous), the presence of monazite and are sensitive to the melting depth of the TTGs source.

Keywords: Archean; TTGs; U-Th-Pb datation; Metamorphism; Monazite; Apatite